Event 1images

Charged cosmic rays and
high energy gamma rays
interact with the atmosphere.

This produces extensive air
showers of secondary

particles emitting Cherenkov &
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Types of events and modelling

Two types of events are observed:
* gamma-quanta — events
of interest
* hadrons - background
events. Most of the |
observed hadronic events
are proton events |
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Generative adversarial networks (GANS)

GAN i1s a special class of machine learning frameworks
designed to generate, improve or process images. Each
GAN consists of two contesting neural networks: a
generator and a discriminator.
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Input preprocessing and GAN training

GAN training requires training images.

We choose to make a separate network for each type of
event.

For training we used a sample of 2D 1mages obtained

using OPTICA-TAIGA Monte Carlo simulation software
containing:
e 25000 gamma events

light. Identifying the type of the registered event 1s an i — —
e e L important task. i S _ * 25000 proton events
The TAIGAIACT telescopes . ; .. Inthe TAIGA-IACT project, in addition to images | e e i When preparing the training images, we applied:

detect the light.

Detected data form "images" of the air

shower.

The original recorded images are

hexagonal.

obtained experimentally, model images are widely used.
Current modelling involves Monte Carlo simulation of
the underlying physical processes. This procedure is
very resource intensive and time consuming.

Our goal: to simulate event images quickly and still
accurately.

We suggest using generative adversarial networks.

(Generator and discriminator architectures for TAIGA-TACT

Binary Classification
(Real/Fake)

Generator: tries to transform its random input into
images similar to the real ones.

Discriminator tries to distinguish between real images
and fake images produced by the generator.

Generator and discriminator are trained together on real
images in an adversarial game.

Network training and results

Two separate GANs were created: for gamma events
and for proton events.

* image cleaning
 coordinate transformation
* Image resizing
* pixel values recalculation

Conclusion

Examples of
images after
preprocessing:

* GANs simulate proton and gamma events for
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