CoREAS simulations of inclined air showers predict refractive displacement of the radio-emission footprint

Marvin Gottowik (gottowik@uni-wuppertal.de), Felix Schlüter (felix.schlueter@kit.edu), Tim Huege and Julian Rautenberg

Take home messages:

- Displacement of radio emission up to 1.5 km on ground for $\theta = 85^{\circ}$
- Results confirmed by model of refraction in the atmosphere
- Full paper with additional information: F. Schlüter et al. EPJ C 80 (2020) 643

Bundesministerium für Bildung und Forschung

Radio emission footprint

- Superposition of geomagnetic and charge-excess emission caused by individual polarization patterns
- Cherenkov-like compression of radio signal
 - − Radio emission arrives simultaneously
 → increased signal on a ring around shower axis
 - Later: use Cherenkov ring to fit radio core
- Asymmetric radio footprint, bean-like shape of the signal distribution
- Additional early-late effect for inclined air showers, understood and taken into account (EPJ Web of Conferences 216, 03009 (2019))

From an apparent asymmetry...

- Air shower with 85° zenith angle simulated with 4 different refractivity profiles in the atmosphere
- Expected symmetry on pos. and neg. $\vec{v} \times (\vec{v} \times \vec{B})$ axis for constant values of refractive index
- Apparent asymmetry for a changing refractive index, effect increases when doubling refractivity of the atmosphre

From an apparent asymmetry...

- Air shower with 85° zenith angle simulated with 4 different refractivity profiles in the atmosphere
- Expected symmetry on pos. and neg. $\vec{v} \times (\vec{v} \times \vec{B})$ axis for constant values of refractive index
- Apparent asymmetry for a changing refractive index, effect increases when doubling refractivity of the atmosphre

... to a displacement

- Air shower with 85° zenith angle simulated with 4 different refractivity profiles in the atmosphere
- Lateral signal distribution is symmetric, but symmetry axis not the MC axis
- Displacement into pos. $\vec{v} \times (\vec{v} \times \vec{B})$ direction ("early direction")
- Displacement of the radioemission footprint due to refraction in the atmosphere

Fitting the Cherenkov ring

- Simulate observers on a star-shaped grid
- Interference can remove Cherenkov ring for small geomagnetic angles
 → use only geomagnetic fluence
- Radio core = center of the Cherenkov ring

Experts: iterativ extraction of Cherenkov ring

- 1. Use MC impact point as radio core
- 2. Calculate geomagnetic energy fluence

 $f_{\text{geo}} = \left(\sqrt{f_{\mathbf{v}\times\mathbf{B}}} - \frac{\cos\Phi}{|\sin\Phi|} \cdot \sqrt{f_{\mathbf{v}\times(\mathbf{v}\times\mathbf{B})}}\right)^2$

- 3. Calculate positition of max fluence on each arm
- 4. Fit Cherenkov ring and update core position
- 5. Go to 2. until convergence

Example fit

- Event with $\theta = 85^{\circ}$ coming from N-W
- 125 ± 21 m displacement in shower plane, 1428 ± 240 m in ground plane

axis distance / m

Example fit

- Event with $\theta = 85^{\circ}$ coming from N-W
- 125 ± 21 m displacement in shower plane, 1428 ± 240 m in ground plane

Refractive displacement of the radio-emission footprint gottowik@uni-wuppertal.de | ICRC 2021 | Slide 8 Simulations match ambient conditions of the Pierre Auger Observatory, e.g. frequency band 30 – 80 MHz (also used by LOFAR/Tunka-Rex)

Radio core restores radial symmetry

 Maximal difference between the Cherenkov radii of geomagnetic emission on individual arms: 268 m (MC core) → 40 m (radio core)

Core displacement

- Analysis of 4185 events:
 - $-\log_{10}(E/eV) = 18.4, 18.6, \dots, 20.2$
 - Zenith angles = 65°, 67.7°, ... , 85°
 - Azimuth angles = East, South-East, South,
- Relevant quantity geometric distance to X_{max} , combination θ (1st order) and X_{max} (2nd order)
- Displacement of more than 1.5 km ground, corresponds to ~15 % of the Cherenkov radius in the shower plane
- East-West asymmetry, stronger displacement for showers coming from West ($\cos \phi = -1$) than East ($\cos \phi = 1$)

Directional core displacement

- Displacement always into the incoming direction of the air shower
 - Top plot: linear scale, circle denotes constant displacement of 1500 m
 - Bottom plot: lineare scale inside red square, logarithmic outside of square
- East-West asymmetry and rotation of the pattern need further investigation

Refraction model

- Reflection of the radio emission following Snell's law for finely layered atmosphere
- Predicts displacement in shower incoming direction

- Reasonable describtion of the magnitude (orange line) and slope (orange squares)
 - No strong correlation of residuals with distance to X_{max}

Long paper

Eur. Phys. J. C (2020) 80:643 https://doi.org/10.1140/epjc/s10052-020-8216-z THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Refractive displacement of the radio-emission footprint of inclined air showers simulated with CoREAS

Felix Schlüter^{1,2,a}, Marvin Gottowik^{3,b}, Tim Huege^{1,4}, Julian Rautenberg³

¹ Karlsruher Institut für Technologie, Institut für Kernphysik, Karlsruhe, Germany

² Universidad Nacional de San Martín, Instituto de Tecnologías en Detección y Astropartículas, Buenos Aires, Argentina

³ Bergische Universität Wuppertal, Wuppertal, Germany

⁴ Vrije Universiteit Brussel, Astrophysical Institute, Brussels, Belgium

Received: 14 May 2020 / Accepted: 7 July 2020 / Published online: 19 July 2020 \odot The Author(s) 2020

• More information in paper: Link

e.g. similar displacement for 30–80 MHz (e.g. AERA) and 50–200 MHz (e.g. GRAND)

Conclusion

- Radio core is displaced up to 1.5 km with respect to MC core, corresponds to 15% of Cherenkov radius in the shower plane
- Refraction during propagation in an atmosphere with a refractive index gradient
- Detailed understanding of the radio footprint:
 - Superposition of geomagnetic and charge-excess emission
 - Early-late asymmetry (for inclined air showers)
 - Core displacement (for inclined air showers)
- Relevant for development of a radio reconstruction for inclined air showers and interpretation of hybrid detection, i.e. particles and radio
- Further information in F. Schlüter et al. EPJ C 80 (2020) 643