Energy spectrum and the shower maxima of cosmic rays above the knee region measured with the NICHE detectors at the TA site

Y. Omura¹, R. Tsuda¹, Y. Tsunesada¹, D.R. Bergman² and J.F. Krizmanic³ for the Telescope Array collaboration

¹ Graduate School of Science, Osaka City University, Sumiyoshi, Osaka, Japan
² Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
³ University of Maryland, Baltimore County, Baltimore, Maryland, USA

Outline

- NICHE experiment
- Monte-Carlo Simulation
 - Reconstruction Method
 - Reconstruction Resolution
 - Comparison between MC and Observation Data
 - Aperture
- 1-year Observation Data
 - Energy Spectrum
 - Xmax distributions and Composition

NICHE(Non-Imaging CHErenkov)

- CR composition at $10^{15\text{--}18.5}\,\text{eV}$
- Cherenkov light lateral distribution and profile
- "Full NICHE" with ~70 counters
- jNICHE goes first with 14 counters

NICHE Prototype Array

NICHE Prototype Array

Monte-Carlo Simulation

- Air-Shower Simulation:
 - 10 million shower events sampled randomly with replacement from the 5,042 original showers generated by CORSIKA, so that it follows different 3 distributions in each energy bin:
 - zenith-angle distribution ($\propto \cos \theta \sin \theta$, $0 \le \theta$ [deg] ≤ 40)
 - uniform core-position distribution for both X and Y ($-500 \le X/Y$ [m] ≤ 500)
 - energy distribution $\left(\frac{dN}{dE} \propto E^{-3}, 10^{15} \le E \text{ [eV]} \le 10^{17}\right)$.
 - QGSJET-II/GHEISHA "High resolution": no THINning and CERSIZ=1
- Detector-Response Simulation:
 - Ray-tracing using ROBAST
 - Impulse response and transit time of PMT
 - Self triggering and baseline fluctuation on electronics
 - Status of real available detector

Reconstruction Method

- Arrival direction is determined by the plane fitting assumed as its going with light speed.
- Core position, shower energy and Xmax are determined by the LDF-fitting result:

Data Cleansing and Resolutions

There are 287,751 events (19.7%) of 1,461,961 matched with the following 2-steps quality criteria:

1st quality criterion:

- Zenith Angle $< 30^{\circ}$
- The number of detectors \geq 5
- Core distance from the center of the array $R_{\rm p} < 200~\text{m}$
- Whether optimization of LDF fitting looks okay

2nd quality criterion:

- the largest 5% cut of LDF χ^2 distribution for each of different NDF

Note that, for determining Xmax, more strict quality criterion are met: $\cdot R_p < 100 \text{ m} \text{ (instead of 200 m)}$ $\cdot \text{ the number of detectors} \ge 6 \text{ (instead of 5)}$

Resolutions for $E=6\ \text{PeV}$

Compare my MC Simulation to Real Data

Overlaid histogram and its residual plot, drawn with observation data and MC data with pure proton/iron

Azimuth Angle

Energy

Zenith Angle

Xmax

Aperture

Aperture is calculated by the following equation:

$$A(E) \sim \frac{\pi}{4} \cdot \frac{N_{\rm sel}(E)}{N_{\rm all}(E)} \cdot S_{\rm max}$$

 N_{sel} is the number of events after the data cleansing. N_{all} is the number of shower events used in MC. S_{max} is the area of the uniformly-distributed core positions.

Note that this aperture is calculated just for the case that all 13 detectors are available, but real detector status must be considered.

Aperture

1-year Observation Data

- 1-year observation data for March 2019 to 2020
 - The total number of shower events is 165,839
 - The total observation time is 536.9 h
 - Used 13 detectors out of 14 (except for dirac)
 - Calibrated by the NICHE-TALE hybrid analysis (detector-wise relative calibration and absolute calibration mainly based on TALE-FD)

• There are just 4,943 events (3.0%) left of 165,839 by the data cleansing.

Distribution of the Number of Shower Events

11

Energy Spectrum

12

Xmax Distributions

Composition

- The main purpose of NICHE experiment is to investigate the energy and the composition of the primary cosmic ray at the 2nd knee region.
- First results of preliminary cosmic-ray energy spectrum and composition are shown.