Indication of a mass-dependent anisotropy above $10^{18.7} \text{ eV}$ in the hybrid data of the Pierre Auger Observatory

Cosmic Ray Indirect – Contribution 630 Discussion on July 13th @ 18 00 CEST

Eric Mayotte^a on behalf of the Pierre Auger Collaboration^b spokespersons@auger.org

^a Bergische Universität Wuppertal, Department of Physics, Gaußstraße 20, Wuppertal, Germany ^b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

SPONSORED BY THE

Federal Ministry of Education and Research

OBSERVATORY

• Above the ankle at 5 EeV, flux long thought to be primarily extragalactic in origin. Ex: (Linsley 1963)

- Supported by the Dipole above 8 EeV (Aab et al. 2017)
 → Ex: see (C. Ding, this conference #1415)
- Further supported by evidence of anisotropies above 32 EeV (J. Biteau, this conference #511)
- Above the ankle, the composition is well described as intermediate in mass and mixed (Bellido 2018) and (E. Guido, this conference #547)

Indication of a mass-dependent anisotropy above $10^{18.7}$ eV – CRI 630 – July 13^{th} @ 18 00 CEST

Key features of UHECR flux above the ankle

1

Higher mass primaries from the Galactic plane

- (Erdmann et al. 2016) showed definite transition from diffusive to ballistic propagation in GMF around 6 EV
- (Farrar and Sutherland 2019) showed GMF obscures sources and lenses their images off the plane
- (Farrar 2014) showed effect where images of off-plane sources are lensed toward the plane
- Effect depends on primary rigidity
 - \rightarrow no effect on diffusely propagating particles
 - \rightarrow deflection starts around ballistic rigidity threshold
 - \rightarrow weakens for higher rigidity particles
- UHECR composition mixed, therefore as energy climbs:
 - \rightarrow effect starts then weakens for light primaries
 - \rightarrow kicks in for progressively heavier component
 - \rightarrow heaviest components diffusive \rightsquigarrow isotropic

Lensing of off plane sources - proton 10 EeV

Step-by-step testing method

- 1. Measure the atmospheric depths of shower maximum, X_{max} , using the hybrid method outlined in (Aab et al. 2014) and specifically (Yushkov 2020)
- 2. Remove the X_{max} elongation rate so events over a threshold energy, E_{min} , can be combined
- 3. Define the on- and off-plane regions using some Galactic latitude splitting angle b_{split} On-plane: $|b_i| \le b_{split}$ Off-plane: $|b_i| > b_{split}$
- 4. Obtain a Test Statistic comparing the on- and off-plane X_{max} distributions using the Anderson-Darling 2-Sample test (Anderson and Darling 1952)
- 5. Perform a scan over a subset of the data to select E_{\min} and b_{split} prescription.
- 6. Apply the scan selected thresholds as a prescription to remaining data (01.01.2013-31.12.2018)
- 7. Calculate statistical significance using Monte-Carlo and random skies
- 8. Evaluate systematic uncertainties

Indication of a mass-dependent anisotropy above 10^{18.7} eV - CRI 630 - July 13th @ 18 00 CEST

REBRISCHE

1. Measuring X_{max} at the Pierre Auger Observatory

The Pierre Auger Observatory

- FD: 27 fluorescence telescopes
- SD: 1660 water-Cherenkov detectors
- Hybrid measurement concept:
 - \rightarrow Core timing/location with SD
 - \rightarrow Geometry with FD pixel trace
 - \rightarrow Energy and X_{\max} from FD light profile

Event X_{max} values obtained using:

the reconstruction, selection, and methods

from (Yushkov 2020) on hybrid data

collected between 01.12.2004-31.12.2018

- see backup for details -

2. Removal of X_{max} elongation rate

Choice of hadronic model has insignificant influence on end result ($\approx 0.02 \text{ g/cm}^2$)

Indication of a mass-dependent anisotropy above $10^{18.7}$ eV – CRI 630 – July 13^{th} @ 18 00 CEST

Data scan and prescription

Data-driven selection of energy and latitude thresholds

- Scan over the data recorded before 01.01.2013 (54%)
- 5° steps in b and $0.1 \lg(E/eV)$ steps in energy
- Highest TS of 8.35 for: $\rightarrow E_{\min} = 10^{18.7} \text{ eV}$ $\rightarrow b_{\text{solit}} = 30^{\circ}$

Set as prescription for remaining data

On- and off-plane X_{max} difference in remaining data

Unscanned data: TS = 12.6 $\Delta \langle X'_{max} \rangle = 10.5 \pm 2.5^{+2.1}_{-2.2} \text{ g/cm}^2$ $\Delta \sigma (X'_{max}) = 5.9 \pm 3.1^{+3.5}_{-2.5} \text{ g/cm}^2$

Statistical significance is calculated by duplicating the analysis on many random skies

- The data is shuffled in arrival direction to form random skies for each MC trial from which TS are extracted
- Scan duplicated in all data test \rightarrow Imposes heavy penalization (only 0.5 σ gained)
- 1E9 MC trails for unscanned data ($<1\,\%$ uncertainty)
- 1E10 MC trails for full dataset (< 1 % uncertainty)

Unscanned data: Stat. Significance 4.4 σ Chance probability 1 in 172,000

Sources of systematic uncertainty

BERGISCHE UNIVERSITÄT WUPPERTAL

- Systematic effects which apply equally to both regions will cancel in a comparison between them
 - Local event arrival geometries, camera signatures and atmospheric conditions very similar
- Same detectors, reconstruction method and analysis technique for both regions

Only non-canceling sources of systematic uncertainty:

- 1. Selection and reconstruction uncertainties
- 2. Seasonal variation of exposure and aerosols
- 3. Instrumentation differences between FD sites

Significance considering systematic uncertainties

- On/Off-plane mean $X_{\rm max}$ difference is 4.1 imes the systematic uncertainty
- On/Off-plane RMS difference is 2.4 \times the systematic uncertainty
- Impact of the systematic uncertainty on significance estimated by randomly sampling from them to decrease on/off-plane difference on an event-by-event basis
- 1 million trials gives a lower bound TS of 11.2

 \rightarrow at least 3.3 σ with systematic effects taken as the resultant confidence level.

On/Off difference independently seen in all FD sites and 22/28 zenith bins

Because each FD site FoV differs by 90° Systematic causes <u>can not</u> easily explain the on/off difference.

Map compares $\langle X_{max} \rangle$ of events within 30° of each bin to the rest of the sky

Red: lower mass than rest of sky Blue: higher mass than rest of sky

- TS is Welch's T-Test applied to inand out-of-hat X'_{max} distributions (Welch 1938)
- Detector/analysis effects corrected for by event arrival declination

Indication of a mass-dependent anisotropy above 10^{18.7} eV - CRI 630 - July 13th @ 18 00 CEST

Discussion

- Suggests GMF could cause composition anisotropies
 - \rightarrow However, a causal relationship with the GMF is not required
- Unrelated anisotropy may have instead been captured by lucky use of the Galactic plane as a catalog

 \rightarrow Mass-dependent horizons can create composition anisotropies à la (Globus, Allard, and Parizot 2008)

 \rightarrow In any case, a combination of several effects is likely

- Due to impending changes to our standard $X_{\rm max}$ reconstruction, results are preliminary
 - \rightarrow New general FD X_{\max} publication in preparation
 - \rightarrow Publication in preparation

Thanks for you interest!

Don't miss the discussion session on July 13th at 18:00 CEST

See backup slides for:

- References
- Further motivation
- X_{max} reconstruction details
- Systematic checks
- RA/Dec Sky Map

References

- Aab, Alexander et al. (2014). "Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: Measurements at Energies above 10^{17.8} eV". In: PRD 90.12, p. 122005. DOI: 10.1103/PhysRevD.90.122005.
- (2017). "Observation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8 × 10¹⁸ eV". In: <u>Science</u> 357.6537, pp. 1266–1270. DOI: 10.1126/science.aan4338.
- Bellido, Jose (2018). "Depth of maximum of air-shower profiles at the Pierre Auger Observatory". In: Pos ICRC2017. Ed. by Darko Veberic, p. 506. DOI: 10.22323/1.301.0506.
- Erdmann, Martin et al. (2016). "The Nuclear Window to the Extragalactic Universe". In: Astropart. Phys. 85, pp. 54-64. DOI:

10.1016/j.astropartphys.2016.10.002.

Farrar (2014). "The Galactic magnetic field and ultrahigh-energy cosmic ray deflections". In: <u>C R Phys</u> 15.4, pp. 339–348.

Farrar and Sutherland (2019). "Deflections of UHECRs in the Galactic magnetic field". In: JCAP 05, p. 004. DOI:

10.1088/1475-7516/2019/05/004

- Globus, N., D. Allard, and E. Parizot (2008). "Propagation of high-energy cosmic rays in extragalactic turbulent magnetic fields: resulting energy spectrum and composition". In: <u>Astron. Astrophys.</u> 479, p. 97. DOI: 10.1051/0004-6361:20078653.
- Jansson, Ronnie and Glennys R. Farrar (2012). "A New Model of the Galactic Magnetic Field". In: ApJ. 757, p. 14. DOI:

10.1088/0004-637X/757/1/14.

- Linsley, John (1963). "Primary cosmic rays of energy 10**17 to 10**20-eV: The energy spectrum and arrival directions". In: ICRC 8 77. Pshirkov, M. et al. (2011). "Deriving global structure of the Galactic Magnetic Field from Faraday Rotation Measures of extragalactic sources". In: Astrophys. J. 738, p. 192. DOI: 10.1088/0004-637X/738/2/192.
- Welch, Bernard L (1938). "The significance of the difference between two means when the population variances are unequal". In: Biometrika 29.3/4, pp. 350–362. DOI: 10.2307/2332010.

Mass Composition of Cosmic Rays with Energies above 10^{17.2} eV from the Hybrid Data of the Pierre Auger Observatory (2020). Vol. ICRC2019, p. 482. DOI: 10.22323/1.358.0482.

Map compares $\langle X_{\max} \rangle$ of events within 30° of each bin to the rest of the sky

Red: lower mass than rest of sky Blue: higher mass than rest of sky

- TS is Welch's T-Test applied to inand out-of-hat X'_{max} distribution
- Detector/analysis effects corrected for by event arrival declination

Indication of a mass-dependent anisotropy above 10^{18.7} eV - CRI 630 - July 13th @ 18 00 CEST

Motivating mass dependent anisotropies

BERGISCHE UNIVERSITÄT WUPPERTAL

- (Erdmann et al. 2016) showed transition from diffusive to ballistic propagation in the GMF around 4 - <u>6</u> EV using both JF12 (Jansson and G. R. Farrar 2012) and PTK11 (Pshirkov et al. 2011)
- Threshold dependence on Galactic latitude of CR
- At fixed energy above this limit: High mass → diffusive → isotropic arrival Low mass → ballistic → preserve some source anisotropy
- Differing horizon of each primary species introduces potential of differing source distributions (Globus, Allard, and Parizot 2008)

(Erdmann et al. 2016)

Measuring X_{max}: geometry reconstruction

Indication of a mass-dependent anisotropy above $10^{18.7}\,\text{eV}$ – CRI 630 – July 13^{th} @ 18 00 CEST

Measuring X_{max}: Shower Profile Reconstruction

Indication of a mass-dependent anisotropy above $10^{18.7}$ eV – CRI 630 – July 13^{th} @ 18 00 CEST

Quality Selection Criteria:

- Full instrumentation functionality, no clouds and clear atmosphere
- Long tracks in detector (20°) with X_{max} in FoV with a low fit χ^2

Fiducial Selection Criteria:

- Surface Detector proton trigger probability > 0.9
- Surface Detector proton iron trigger efficiency difference < 0.05
- FD Fiducial FoV cuts to flatten X_{max} acceptance

Post-cut X_{max} distribution still differs from true X_{max} distribution due to resolution, and detector acceptance. $f_{obs}(X_{max}^{rec}) = \int_0^\infty f_{true}(X_{max})\varepsilon(X_{max})R(X_{max}^{rec} - X_{max})dX_{max}$

Field of View and X_{max} Acceptance

Fiducial FoV Cuts

Fiducial cut flattens X_{max} acceptance for the majority of selected events. Events with non-flat acceptance up-weighted via acceptance parameterization

Indication of a mass-dependent anisotropy above 10^{18.7} eV - CRI 630 - July 13th @ 18 00 CEST

 X_{max} acceptance of on- and off-plane probed with Sibyll-2.3c CONEX showers (p, Fe) with the profile shifted so that $X_{\text{max}} \in [300, 1500] \text{ g/cm}^2$ is sampled evenly

- Detector simulations account for time dependent state of the detector
- On- and off-regions corrected separately \rightarrow weighting method from 2014 PRD employed (Aab et al. 2014)
- 1.4% events in data have less than full acceptance Detector and selection acceptance agree well within uncertainties

X_{max} Resolution and Systematic Uncertainties

Systematic uncertainties from the atmosphere, FD calibration reconstruction and detector are summed for systematic error of the moments

Indication of a mass-dependent anisotropy above 10^{18.7} eV - CRI 630 - July 13th @ 18 00 CEST

X_{max} Reconstruction bias and resolution On/Off-plane

 X_{max} rec. bias and resolution on- and off-plane probed with 4-component (H, He, N, Fe) Sibyll-2.3c CONEX showers

- Detector simulations account for time dependent state of the detector
- Components reweighed to (Bellido 2018) mass fractions by energy
- Event-by-event comparison of reconstructed X_{max} to MC truth
- On- and off-regions each corrected by their energy parameterization

Reconstruction bias and resolution agree well within uncertainties

Systematic Error Summary from (Aab et al. 2014)

Error Source	Ref.	$\langle X_{max} \rangle$ Error 18.4 lg(E/eV)	r [g/cm ²] 19.6 lg(E/eV)	Applies to comparative analysis?
Detector Calibration SD-FD Timing Offset Pixel Calibration Telescope Alignment		~ # ~ # ~ # # # #	3 2 1 1	no: applies to all events yes: Eye-to-Eye differences yes: Eye-to-Eye differences
Reconstruction		+4.3	+4.0	
Reconstruction Bias Profile Fit Function Lateral Width Correction		0.12 0 ± 4 $+1.6$ -7.1	$+0.1 \\ -1.3$	yes: sky region differences no: applies to all events no: On/Off Plane geometric similarity
Atmosphere		$\leq^{+4.6}_{-3.8}$	$\leq^{+7.5}_{-4.7}$	
Fluorescence yield Multiple Scattering VAOD Systematics VAOD Uniformity VAOD Normalization		$\pm 0.0 \\ \leq \pm 0.1 \\ \leq \pm 1.6 \\ \pm 2.8 \\ + 2.5 \\ + 2.5 \\ = -0.1 \\ \pm 0.1 \\ \leq \pm 0$	$ \begin{array}{c} $	no: applies to all events no: On/Off Plane geometric similarity yes: seasonal variation of VAOD
Other		\leq^{+2}_{-1}	5	
X _{max} Acceptance Invisible energy		<pre></pre>		yes: sky region differences no: applies to all events
Total from dedicated studies		$\leq ^{+2.60}_{-2.18}$	$\leq ^{+3.80}_{-2.77}$	see below

Indication of a mass-dependent anisotropy above $10^{18.7}$ eV – CRI 630 – July 13^{th} @ 18 00 CEST

Changes to the magnitude of the end result using a permutation of all parameterization errors

Source	Uncertair $\Delta \langle X_{\sf max} angle$	ty [g/cm ²] $\Delta \sigma (X_{\max})$
X _{max} Acceptance	$^{+1.14}_{-0.71}$	$^{+2.37}_{-1.61}$
Rec. Bias	± 0.36	± 0.01
Rec. Resolution	0	$^{+1.78}_{-0.24}$
Seasonal variation	$^{+1.00}_{-1.53}$	$^{+1.19}_{-1.23}$
Instrumentation	± 1.41	± 1.41
Sum in Quadrature	$^{+2.10}_{-2.23}$	$+3.49 \\ -2.48$

Observed variation of the first two moments of the on- and off-plane X_{\max} distributions weighted by exposure.

Source	Uncertair $\Delta \langle X_{\sf max} angle$	nty [g/cm ²] $\Delta \sigma (X_{\max})$
X _{max} Acceptance	$^{+1.14}_{-0.71}$	$^{+2.37}_{-1.61}$
Rec. Bias	± 0.36	± 0.01
Rec. Resolution	0	$^{+1.78}_{-0.24}$
Seasonal variation	$^{+1.00}_{-1.53}$	$^{+1.19}_{-1.23}$
Instrumentation	± 1.41	± 1.41
Sum in Quadrature	$^{+2.10}_{-2.23}$	$+3.49 \\ -2.48$

Source

Rec. Bias

 $X_{\rm max}$ Acceptance

Rec. Resolution

Seasonal variation

Instrumentation

Sum in Quadrature

Los Leones Ste	Proprietors 0 or: 85 0 off: 82 0 off: 91 0 off: 91
Loma Amarilla -100 Difference in recor	reparisons 0 07: 93 0 07: 105 100 -100 -100 0 1 10 structed X _{inc} (Kye - stereo partner) [g/cm ³]
Site events	$egin{array}{lll} { m Off}-{ m On} \ { m plane} \ { m bias}\ \langle X_{ m max} angle & \sigma\left(X_{ m max} ight) \end{array}$
LL 167	$-0.8\pm3.7\ -3.2\pm2.5$
LM 181	$-1.1\pm 3.7\ -1.0\pm 2.5$
LA 198	$-0.1\pm 3.2\ +0.7\pm 2.2$
CO 230	3.0 \pm 3.1 -2.5 ± 2.1

Comparisons of on- and off-plane X_{\max}	reconstructions
between FD-sites using stereo events.	

Indication of a mass-dependent anisotropy above 10^{18.7} eV - CRI 630 - July 13th @ 18 00 CEST

Uncertainty $[g/cm^2]$

 $\Delta \sigma (X_{\rm max})$

+2.37

-1.61

 ± 0.01 +1.78

-0.24

+1.19

-1.23

 ± 1.41

+3.49

-2.48

 $\Delta \langle X_{\rm max} \rangle$

+1.14

-0.71

 ± 0.36

0

+1.00

-1.53

 ± 1.41

+2.10

-2.23

BERGISCHE UNIVERSITÄ WUPPERTAL

Energy normalized FidFoV X_{max} on- and off-plane plotted separately vs time.

- Points are sets of 10 events
- Lines are cumulative means
- Solid fill is the running average over surrounding 40 events

Both On and Off separately display a similar trend to those seen in other studies No apparent affect on result.

Indication of a mass-dependent anisotropy above $10^{18.7}\,\text{eV}$ – CRI 630 – July 13 $^{\text{th}}$ @ 18 00 CEST

Anderson-Darling 2 Sample Homogeneity Test

$$TS_{AD} = \frac{n-1}{n^2} \sum_{i=1}^{2} \left[\frac{1}{n_i} \sum_{j=1}^{L} h_j \frac{(nF_{ij} - n_iH_j)^2}{H_j(n - H_j) - \frac{1}{4}nh_j} \right]$$

Modification to add sensitivity to distribution ordering

$$TS = \begin{cases} TS_{\text{AD}} & : \langle X_{\text{max}}^{\text{norm}} \rangle^{\text{on}} < \langle X_{\text{max}}^{\text{norm}} \rangle^{\text{off}} \\ -3 & : \textit{else} \end{cases},$$

$$z_i = X_{max}^{norm} = X_{max i} - EPOS_{Fe}(E_i)$$

- *n* size of pooled sample
- n_i size of sample *i*

 z_j the value of the j^{th} event in the combined data set ordered from smallest value to largest

 h_j is number of events in the pooled sample with a value equal to z_j

 H_j is number of events in the pooled sample with a value less than $z_j + \frac{1}{2}h_j$

 F_{ij} is number of events in the i^{th} sample with a value less than $z_j + \frac{1}{2}h_j$