

Measurement of Nuclear Fragmentation Cross Sections with NA61/SHINE for a better understanding of the Propagation of Cosmic-Ray Nuclei in the Galaxy Neeraj Amin for the NA61/SHINE Collaboration, Karlsruhe Institute of Technology, Germany

The Physics Case

- Interactions of primary cosmic ray nuclei with ISM produces secondary cosmic ray nuclei.
- Light secondary nuclei include Li. Be and B
- Cross sections values are a crucial input for propagation models

fig 1: CR propagation in the galaxy

- → ¹²C (primary) + p_{ISM} → ¹¹C* + n (secondary & short lived)
- → ¹¹C* decays to ¹¹B as ¹¹C* → ¹¹B + β⁺

secondary-

to-primary

flux ratio

recent AMS-02

uncertainties from

measurements < 5%

- Thus infamously categorized as 'Ghost nucleus'
- Contribution to the total secondary B production cross section is significant and necessary!

VTPCfig.2: NA61/SHINE setup

NA61/SHINE to the Rescue

Experimental setup:

/(S1signal)/(ADC counts

-of-target interactions.

5 55

 $d_{pr} = 1.5 \text{ cm } \& d_{p} = 1.0 \text{ cm}$

effective reaction achieved:

Target setting: CH₂ (PE) & C and

empty target (OUT) to correct for ou

 $C+p = (C+CH_{a})-(C+C)-det.$ interactions

- Multipurpose experiment on the H2 beam line at CERN_[2].
- Aim: to study hadron-nucleus and nucleus-nucleus interactions with fixed targets.
- Nuclear interactions can be studied up to 400 GeV/c beam momentum.
- Main detectors: 2 Vertex and 2 Main TPCs(VTPCs & MTPC) VTPCs inside superconducting magnets.

2018

in the MTPC

C-target

mass identification from Δx deflection

in the magnetic field (relative to A/Z=2)

Analysis of Carbon Isotopes

Flow of the Analysis:

fragments (Li, Be, B) in light ion (C, N, O) fragmentation at the SPS_[7].

References: [1] Y. Génolini, D. Maurin, I. V. Moskalenko, and M. Unger, Phys. Rev. C 98,034611 (2018) M.Unger for the NA61/SHINE Collab. PoS ICRC 2019, arXiv:1909.07136v1 N. Abgrall et al., [NA61/SHINE Collab.] JINST 9 (2014) P06005
 A. Aduszkiewicz et al., [NA61/SHINE Collab.],2017. CERN-SPSC-2017-035; SPSC-P-C. Evoli, R. Aloisio, and P. Blasi Phys. Rev. D99 no.-10, (2019) 103023. [6] N. Abgrall et al., [NA61/SHINE Collab.] Eur. Phys. J. C76 (2016) 84.
[7] A. Aduszkiewicz et al., [NA61/SHINE Collab.],2018. CERN-SPSC-2019 330- ADD-9

Ghosts in Space

Current Status

Galactic CR

Propagation

models

Eminent need of precise laboratory

measurements of nuclear fragmentation

cross sections

nuclear

fragmentation

cross sections

current values

induce ≈ 20%

uncertainty