

A. Bonardi, S. Buitink, A. Corstanje, K. D. de Vries, H. Falcke, B. M. Hare, J. R. Hörandel, T. Huege, G. Krampah, P. Mitra, K. Mulrey*, A. Nelles, H. Pandya, J. P. Rachen, E. Santiago, L. Rossetto, O. Scholten, R. Stanley, S. ter Veen, T. N. G. Trinh, T. Winchen

*kmulrey@vub.be

- Energy scales between different experiments differ, must be scaled in order to achieve a global spectrum
- Difficult to directly compare energy reconstruction (different detection methods, systematics, etc.) between experiments

K. Mulrey

- Energy scales between different experiments differ, must be scaled in order to achieve a global spectrum
- Difficult to directly compare energy reconstruction (different detection methods, systematics, etc.) between experiments
- A universal energy scale is critical for understanding cosmic ray sources and acceleration

K. Mulrey

A common energy scale has been derived using a data driven using a Global Spline fit (H. Dembinski et al., PoS(ICRC2017)533

Can a global energy scale be determined experimentally?

A common energy scale has been derived using a data driven using a Global Spline fit (H. Dembinski et al., PoS(ICRC2017)533

Can a global energy scale be determined experimentally?

Cosmic-ray energy cross-calibration array

A common energy scale has been derived using a data driven using a Global Spline fit (H. Dembinski et al., PoS(ICRC2017)533

Can a global energy scale be determined experimentally?

A common energy scale has been derived using a data driven using a Global Spline fit (H. Dembinski et al., PoS(ICRC2017)533

Can a global energy scale be determined experimentally?

ICRC 2021

A common energy scale has been derived using a data driven using a Global Spline fit (H. Dembinski et al., PoS(ICRC2017)533

Can a global energy scale be determined experimentally?

Use radiation energy to compare energy scales

- energy emitted by the air shower in the form of radio waves
- integral of energy fluence on ground
- scales with energy in electromagnetic components of the air shower

Concept

Use radiation energy to compare energy scales

Make it universal...

a = parametrization of the charge-excess fraction

B_{Earth} = local magnet field

 α = angle between shower axis and B_{Earth} axis

Method from: *C. Glaser, et al. JCAP, 1609(09):024, 2016*

Concept

Use radiation energy to compare energy scales

Make it universal...

a = parametrization of the charge-excess fraction

B_{Earth} = local magnet field

 α = angle between shower axis and B_{Earth} axis

C. Glaser, et al. JCAP, 1609(09):024, 2016

Corrected radiation energy is a universal quantity that can be directly compared between experiments

K. Mulrey

Method from:

Example: LOFAR

LOFAR Radboud air shower Array (LORA)

Particle footprint

Low Frequency Array (LOFAR)

Radio footprint

K. Mulrey

Example: LOFAR

K. Mulrey

South-North (m)

At a radiation energy of 1 MeV, the energy scales of Auger and LORA agree to within 6 ± 20 %

At a radiation energy of 1 MeV, the energy scales of Auger and LORA agree to within 6 ± 20 %

(How can we improve this?

At a radiation energy of 1 MeV, the energy scales of Auger and LORA agree to within 6 ± 20 %

- 14% uncertainty AERA antenna calibration
- 13.6% uncertainty LOFAR radiation energy (dominated by antenna calibration)

K. Mulrey

At a radiation energy of 1 MeV, the energy scales of Auger and LORA agree to within 6 \pm 20 % Measure the

- 14% uncertainty AERA antenna calibration
- 13.6% uncertainty LOFAR radiation energy (dominated by antenna calibration)

K. Mulrey

ICRC 2021

radiation energy

with the same

array

Measure the radiation energy with the same array!

Eliminate uncertainties on the comparison due to antenna calibration, system response, ...

Measure the radiation energy with the same array!

Eliminate uncertainties on the comparison due to antenna calibration, system response, ...

- Autonomous: self triggering, independent energy measurement, no/minimal interference with main experiment
- Portable: can be deployed at different sites, spacing can be adjusted to probe different energy regimes

Triggering: radio + particle

Particle: ensures a cosmic ray Radio: Strong radio signal / usable event

Antenna: SKA log-periodic (v2)

- High gain, smooth response up to 350 MHz
- Well modeled
- Used in SKA, IceTop radio

Scintillators: KASCADE

- ~1m²
- Well understood

CODALEMA electronics

- 1 GS/s sampling
- 14 bit depth
- 2.56 µsec traces
- 15 ns relative accuracy
- 20-25 W power
- External / logic triggering

K. Mulrey

1. Integrate fluence to get radiation energy (2D LDF)

$$F = \varepsilon_0 c \left(\Delta t \sum_{t_1}^{t_2} |\vec{E}(t_i)|^2 - \Delta t \frac{t_2 - t_1}{t_4 - t_3} \sum_{t_3}^{t_4} |\vec{E}(t_i)|^2 \right)$$
 A. Aab et al.
PRL 116 (2016) no.24, 241101

- Only 5 stations- use direction/core info from host experiment
- Develop model for 50-350 MHz footprint
- Resolution ~20% (30-80 MHz)

2. Use broadband spectral information (ARIANNA style)

Welling et al. JCAP 10 (2019) 075

- Make use of spectral information to determine where you are w.r.t the Cherenkov cone
- Single antenna reconstruction?
- Resolution ~15%

Geomagnetic signal on vxvxB arm E~10¹⁷eV Xmax=640 g/cm² zenith=33°

30-80 MHz

position vxB (m)

Energy reconstruction: work in progress

30-80 MHz

K. Mulrey

Timeline

- Prototype design and assembly 2020-2021
- *Deployment*: 2021-2022 @ LOFAR, 2022 @ Auger

Collect ~ 300 events at each location

• Longterm: deploy at other experiments

K. Mulrey

RET-CR Surface array

K. Mulrey

VUB prototype

VUB prototype

K. Mulrey

Extra

Design should be compatible with LOFAR + Auger facilities

K. Mulrey

K. Mulrey

K. Mulrey