TELESCOPE ARRAY ANISOTROPY SUMMARY

Igor Tkachev (INR, Moscow) for the TA collaboration

ICRC2021, Berlin, Germany, July 12-23

Telescope Array Collaboration

USA

Japan

Korea

R.U. ABBASL¹ M. ABE² T. ABU-ZAYYAD,¹ M. ALLEN,¹ R. AZUMA,³ E. BARCIKOWSKI,¹ J.W. BELZ,¹ D.R. BERCMAN,¹ S.A. BLAKE,¹ R. CADY,¹ B.G. CHEON,⁴ J. CHIBA,⁵ M. CHIKAWA,⁶ A. DI MATTEO,^{7,*} T. FUJII,⁸ K. FUJISLE,⁹ K. FUJITA,¹⁰ R. FUJIWARA,¹⁰ M. FUKUSHIMA,^{9,11} G. FURLKH,¹ W. HANLON,¹ M. HAYASHI,¹⁰ N. HAYASHIDA,¹³ K. HIBINO,¹³ R. HIGUCHI,⁹ K. HONDA,¹⁴ D. IKEDA,¹⁵ T. INADOM,¹⁶ N. INOUE,² T. ISHII,¹⁴ R. ISHIMORI,³ H. ITO,¹⁷ D. IVANOV,¹ H. IWAKURA,¹⁶ H.M. JEONG,¹⁸ S. JEONG,¹⁸ C.C.H. JUI,¹ K. KADOTA,¹⁹ F. KAKIMOTO,³ O. KALASHEV,²⁰ K. KASAHARA,²¹ S. KASAMA,²² S. KAWAKAMI,¹⁰ S. KAWANA,² K. KAWATA,⁹ E. KIDO,⁹ H.B. KIM,⁴ J.H. KIM,¹⁰ J.H. KIM,¹ M.H. KIM,¹⁸ S.W. KIM,¹⁸ S. KISHIGAMI,¹⁰ V. KUZMIN,^{20,+} M. KUZNETSOV,^{20,7} Y.J. KWON,²⁴ K.H. LEE,¹⁸ B. LUBSANDORZHIEV,²⁰ J.P. LUNDQUIST,¹ K. MACHIDA,¹⁴ K. MARTENS,¹¹ H. MATSUMIYA,¹⁰ T. MATSUYAMA,¹⁰ J.N. MATTHEWS,¹ R. MAYTA,¹⁰ M. MINAMINO,¹⁰ K. MUKAI,¹⁴ I. MYERS,¹ S. NAGATAKI,¹⁷ K. NAKAI,¹⁰ R. NAKAMURA,¹⁶ T. NAKAMURA,²⁵ Y. NAKAMURA,¹⁶ Y. NAKAMURA,¹⁶ T. NONAKA,⁹ H. ODA,¹⁰ S. OGIO,^{0,26} M. OHNISHI,⁹ H. OHOKA,⁹ Y. OKU,²² T. OKUDA,²⁷ Y. OMURA,¹⁰ M. ONOGI,¹⁰ A. ONOGI,¹⁰ A. OSHIMA,¹⁰ S. OZAWA,²³ I.H. PARK,¹⁸ M.S. PSHIRKOV,^{20,29} J. REMINGTON,¹ D.C. RODRIGUEZ,¹ G. RUBTSOV,²⁰ D. RYU,³⁰ H. SAGAWA,⁹ R. SAHARA,¹⁰ K. SAITO,⁹ Y. SAITO,¹⁶ N. SAKAKI,⁹ T. SAKO,⁹ N. SAKURAI,¹⁰ K. SANO,¹⁶ L.M. SCOTT,³¹ T. SEKI,¹⁶ K. SEKINO,⁹ P.D. SHAH,¹ F. SHIBATA,¹⁴ T. SHIBATA,⁹ H. SHIMODAIRA,⁹ B.K. SHIN,¹⁰ H.S. SHIN,⁹ J.D. SMITH,¹ P. SOKOLSKY,¹ N. SONE,¹⁶ B.T. STOKES,¹ S.R. STRATTON,^{1,31} T.A. STROMAN,¹ T. SUZAWA,² Y. TAKAGI,¹⁰ Y. TAKAHASHI,¹⁰ M. TAKAMURA,⁵ M. TAKEA,⁹ K. TANAKA,²⁰ M. TANAKA,³³ Y. TANOUE,¹⁰ S.B. THOMAS,¹ G.B. THOMSON,¹ F. TINYAKOV,^{20,7} I. TKACHEV,²⁰ H. TOKUNO,³ T. TOMIDA,¹⁶ S. TROTTSKY,²⁰ Y. TSUNESADA,^{10,25} Y. UCHIHORI,³⁴ S. UDO,¹³ T. UEHAMA,¹⁶

¹High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA ²The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan ³Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan ⁴Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea ⁵Department of Physics, Tokyo University of Science, Noda, Chiba, Japan ⁶Department of Physics, Kindai University, Higashi Osaka, Osaka, Japan ⁷Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium ⁸The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan ⁹Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan 10 Graduate School of Science, Osaka City University, Osaka, Osaka, Japan ¹¹Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba, Japan ¹²Information Engineering Graduate School of Science and Technology, Shinshu University, Nagano, Nagano, Japan 13 Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan ¹⁴Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan 15 Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan ¹⁶Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano, Japan 17 Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan ¹⁸Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea. 19 Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan ²⁰Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ²¹Faculty of Systems Engineering and Science, Shibaura Institute of Technology, Minato-ku, Tokyo, Japan ²²Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Neyagawa-shi, Osaka, Japan ²³Department of Physics, Chiba University, Chiba, Chiba, Japan ²⁴Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea ²⁵Faculty of Science, Kochi University, Kochi, Kochi, Japan ²⁶Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka City University, Osaka, Osaka, Japan ²⁷Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan ²⁸Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan 29 Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia 30 Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea. ³¹Department of Physics and Astronomy, Rutgers University - The State University of New Jersey, Piscataway, New Jersey, USA

³²Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan
³³Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan
³⁴National Institute of Radiological Science, Chiba, Chiba, Japan
³⁵CEICO, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
³⁶Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea
³¹Department of Physics, Ehime University, Matsuyama, Ehime, Japan

Russia

Belgium

Czech Republic

157 members, 36 institutes, 7 countries

Slovenia

Outline:

- 1. TA surface detector (SD) data
- 2. CR clustering
 - Dipole
 - Hot spots
- 3. Correlations with putative sources
 - Correlation with LSS
- 4. Spectral and compositional reflections of anisotropy
 - Spectral anisotropies
 - Constraint on CR composition

3

Anisotropy data set (SD)

- zenith angle up to 55°, loose border cut
- angular resolution: < 1.5°
- energy resolution: ~20%
- geometrical acceptance
- will use up to 12 yr of data (12.05.2008-11.05.2020)

507 scintillator detectors 690 sq. km Operational: since 3/2008

CR clustering: Dipole update (12-yr)

Sky map of residual intensity between TA data and an isotropic distribution for E > 8.8 EeV (energy cut corresponds to E > 8 EeV used by Auger).

CR clustering: Dipole update (12-yr)

Residual intensity as a function of the right ascension fitted to $r_{\alpha} \cos(x - \phi_{\alpha})$.

TA 12-yr result : $r_{\alpha} \simeq 3.1 \%$; $\phi_{\alpha} \simeq 134^{\circ}$ For details see report by T. Fujii at this conference Auger 2017 result : $r_{\alpha} \simeq 4.7 \%$; $\phi_{\alpha} \simeq 100^{\circ}$

For the TA+Auger WG dipole result see report by P. Tinyakov, this conference

TA anisotropy summary//ICRC2021

6

CR clustering: Hot spot update (12-yr)

Overall post-trial significance has dropped from 3.4σ to 3.2σ

The growth rate of events inside the hotspot is consistent with the linear one within ~ 1σ

For details see report by J.H. Kim at this conference.

TA anisotropy summary//ICRC2021

CR clustering: Medium scales

For energy dependence of the dipole see reports by T. Fujii and P. Tinyakov, this conference TA anisotropy summary//ICRC2021 8

-90

Sources: Correlation with LSS

- Cosmic ray sources follow matter distribution,
- but cosmic rays are deflected by magnetic fields.
- How to deal with poorly known deflections?

Recipe:

- Define smearing angle θ_0 at E = 100 EeV. Let it scale with E_k as Q/E
- Construct expectation for the flux map Φ_k for a given energy E_k
- Normalise a flux map $\Phi_k(\theta_0, \mathbf{n})$ to a unit integral over the sphere
- Apply model GMF deflections
- Define test statistics with observed arrival directions \mathbf{n}_i

$$TS(\theta_0) = -2\sum_k \left(\sum_i \ln \frac{\Phi_k(\theta_0, \mathbf{n}_i)}{\Phi_{iso}(\mathbf{n}_i)}\right)$$

For details see report by M. Kuznetsov at this conference.

For the TA+Auger correlations with LSS and starburst galaxies see WG report by A. di Matteo.

Sources: Correlation with LSS

One of the maps 180 **Q**

> Sky map Φ_k of expected flux at $E_k = 57$ EeV. The smearing angle at E = 100 EeV is 1°

Sources: Correlation with LSS

Resulting $TS(\theta_0)$ for the datasets defined in the legend. Most significant minimum is at ~20° for 57 EeV < E < 100 EeV. Isotropic distribution is excluded at 2.4 σ level according to the deepest minimum.

For details see report by M. KuznetsovTA anisotropy summary//ICRC2021at this conference11

Correlation with LSS: chemical composition

Distributions of TS minima in the p+Fe model. TA data are compatible with a large fraction of protons.

Correlation with LSS: chemical composition

Upper limits on proton and iron fractions at 68% C.L. as functions of energy, derived from correlation with LSS

For details see report by M. Kuznetsov at this conference.

TA anisotropy summary//ICRC2021

Spectral anisotropy

TA SD spectra measured in two declination bands

The global significance of the difference is 4.3 standard deviations

For details see report by D. Ivanov at this conference 14

Conclusions

At largest angular scales and smallest energies indication for the dipole

□ Hints of anisotropy at higher energies
✓ hot spot survives
✓ correlation with large-scale structure
⇒ consistent with large fraction of protons
✓ declination dependence of the spectrum