Expected performance of the High-Energy Particle Detector on-board the second China Seismoelectromagnetic Satellite

F. M. Follega, R. Iuppa, A. Oliva, M. Pozzato, E. Ricci and <u>Z. Sahnoun</u> for the CSES-Limadou Collaboration

37th International Cosmic Ray Conference, 12 – 23 July 2021

The HEPD-02

HEPD-02, on board of the China Seismo-Electromagnetic Satellite (CSES-02) is a "second generation" particle detector aimed to measure the flux of e-, protons and light ions in near-Earth space and correlate particle bursts to the occurrence of strong seismic events and solar/cosmic phenomena.

Tracker

The energy range explored is: 3 - 100 MeV for electrons and 30 - 200 MeV for protons.

Simulation

A Monte Carlo simulation of the full detector based on GEANT4 has been developed to study the response of HEPD to electrons, protons and light ions. \rightarrow Also used to train and test Machine Learning algorithms for event reconstruction.

The initial energy is reconstructed form the energy released in each sensitive sub-detector.

HEPD-02 Performance

- Isotropic fluxes of electrons, protons and alpha particles on top of the instrument. (flat initial kinetic energy spectra)
- Three trigger masks were examined: T1, T1&T2, T1&T2&P1
- primary kinetic energy distribution producing a trigger signal

Protons

Preliminary results:

- \rightarrow lower threshold (T1):
 - 1.17 MeV for electrons
 - 13.55 MeV for protons

HEPD-02 Performance

T1&T2 trigger configuration

• Angular resolution:

 $\Psi = \arccos(vec_{pred}, vec_{true})$

• Energy resolution: $\sigma(E_{true} - E_{reco})/E_{reco}$

- Particle Identification:
 - \rightarrow electron and proton discrimination (>90%) \rightarrow separate between electrons, protons and alpha particles

37th ICRC, 12-23 July 2021

Conclusions

- Preliminary results showed HEPD new design is able to reveal electrons and protons with low energies.
- The reconstruction algorithms allow for good particle identification and energy / angular resolution.
- HEPD-02 was found to meet the scientific requirements of the CSES-02 mission.

Thank You!

37th ICRC, 12-23 July 2021