Local Turbulence and the Dipole Anisotropy of Galactic Cosmic Rays

Yoann Génolini

In collaboration with Markus Ahlers

Data

 \rightarrow Relative intensity can be decomposed as:

$$I(\Omega) = 1 + \boldsymbol{\delta} \cdot \boldsymbol{n}(\Omega) + \mathcal{O}(Y_{l>1})$$

- \rightarrow CR observatories sensitive to 2 param.
- \rightarrow Small dipole anisotropy of GCRs
- \rightarrow Rapid change of the phase & amplitude with E

Data

→ Relative intensity can be decomposed as:

$$I(\Omega) = 1 + \boldsymbol{\delta} \cdot \boldsymbol{n}(\Omega) + \mathcal{O}(Y_{l>1})$$

- \rightarrow CR observatories sensitive to 2 param.
- \rightarrow Small dipole anisotropy of GCRs
- \rightarrow Rapid change of the phase & amplitude with E

Interpretation

 $\delta~\propto~j_{
m CR}$

- → Compton Getting effect? Small in the local standard of rest
- \rightarrow Diffusion approximation

Fick's law: $\, oldsymbol{j}_{ ext{CR}} = - oldsymbol{K} \cdot
abla \Psi \,$

Energy dependence at odd with diffusion

Depends on:

- Distribution of sources and halo geometry halo?
- Structure of local magnetic field?
 - \rightarrow Both!

 ${old j}_{
m CR} = - {old K} \cdot
abla \Psi$ Ahlers PRL (2016) \rightarrow Both! Local sources may dominate the dipole all SNR $(\langle n \rangle)$ / \bigstar ٠ Vela Geminga Loop 1 Monogem Cygnus Loop ٠ $3K_{\rm iso}|\nabla n|/Q_{\star} \, [{\rm kpc}^{-3}]$ 0. 0.01 10-100 $n/Q_{\star} \, [\mathrm{kpc}^{-3}]$ 10 0.1 10^{2} 10^{3} 10 1 energy [TeV]

 \rightarrow Evolution of the dipole direction with E

See also e.g. Kumar & Eichler APJ (2014) Bouyahiaoui+ JCAP (2019)

How does behave the CR dipole in isotropic turbulence?

$$oldsymbol{\delta} \,\propto\, oldsymbol{j}_{ ext{CR}} = -oldsymbol{K} \cdot oldsymbol{
abla} \Psi$$

 \rightarrow We naively write: $K_{ij} = \delta_{ij}\kappa_{iso}$ $\kappa_{iso} = \lim_{\tau \to \infty} \langle \Delta \mathbf{r}^2(\tau) \rangle_{\rm B}/6\tau$

Does it mean that the anisotropy follow the gradient direction?

How does behave the CR dipole in **isotropic turbulence**?

$$\boldsymbol{\delta} \propto \boldsymbol{j}_{\mathrm{CR}} = - \boldsymbol{K} \cdot \boldsymbol{
abla} \Psi$$

$$\rightarrow$$
 We naively write: $K_{ij} = \delta_{ij}\kappa_{iso}$ $\kappa_{iso} = \lim_{\tau \to \infty} \langle \Delta \mathbf{r}^2(\tau) \rangle_{\rm B}/6\tau$

Does it mean that the anisotropy follow the gradient direction?

Test-particle simulations: backtracking in isotropic turbulence:

How does behave the CR dipole in isotropic turbulence?

$$\boldsymbol{\delta} \propto \boldsymbol{j}_{\mathrm{CR}} = - \boldsymbol{K} \cdot \boldsymbol{
abla} \Psi$$

$$\rightarrow$$
 We naively write: $K_{ij} = \delta_{ij}\kappa_{iso}$ $\kappa_{iso} = \lim_{\tau \to \infty} \langle \Delta \mathbf{r}^2(\tau) \rangle_{\rm B}/6\tau$

Does it mean that the anisotropy follow the gradient direction?

Test-particle simulations: backtracking in isotropic turbulence:

 \rightarrow At low energies particles stream along the local magnetic field

Formalism

Angular power spectrum of CR arrival directions:

$$\frac{C_{\ell}}{4\pi} \simeq \int \frac{d\widehat{\mathbf{p}}_{1}}{4\pi} \int \frac{d\widehat{\mathbf{p}}_{2}}{4\pi} P_{\ell}(\widehat{\mathbf{p}}_{1}\widehat{\mathbf{p}}_{2}) \lim_{\tau \to \infty} (\Delta r_{1i}(-\tau)\Delta r_{2j}(-\tau)) \frac{\partial_{i}n\partial_{j}n}{n^{2}} \qquad \text{Ahlers \& Mertsch AJL (2015)}$$
CR dipole power:
$$\underbrace{C_{1}}_{4\pi} \simeq S_{ij} \frac{\partial_{i}n\partial_{j}n}{n^{2}} \qquad \text{with} \qquad \mathbf{S} \equiv \mathcal{K}^{T}\mathcal{K} \qquad \text{and} \qquad \mathcal{K}_{ij} \equiv \lim_{\tau \to \infty} \langle \widehat{p}_{i}(0)\Delta r_{j}(-\tau) \rangle_{\Omega}$$

$$\underbrace{C_{1}}_{\pi \to \infty} \langle \widehat{p}_{i}(0)\Delta r_{j}(-\tau) \rangle_{\Omega}$$

Simulation set up

Formalism

Angular power spectrum of CR arrival directions:

$$\frac{C_{\ell}}{4\pi} \simeq \int \frac{d\widehat{\mathbf{p}}_{1}}{4\pi} \int \frac{d\widehat{\mathbf{p}}_{2}}{4\pi} P_{\ell}(\widehat{\mathbf{p}}_{1}\widehat{\mathbf{p}}_{2}) \lim_{\tau \to \infty} (\Delta r_{1i}(-\tau)\Delta r_{2j}(-\tau)) \frac{\partial_{i}n\partial_{j}n}{n^{2}} \qquad \text{Ahlers \& Mertsch AJL (2015)}$$
CR dipole power:
$$\underbrace{C_{1}}_{\frac{C_{1}}{4\pi}} \simeq S_{ij} \frac{\partial_{i}n\partial_{j}n}{n^{2}} \qquad \text{with} \qquad \mathbf{S} \equiv \mathcal{K}^{T}\mathcal{K} \qquad \text{and} \qquad \mathcal{K}_{ij} \equiv \lim_{\tau \to \infty} \langle \widehat{p}_{i}(0)\Delta r_{j}(-\tau) \rangle_{\Omega}$$

$$\underbrace{\mathsf{Coincides with the TKG definition if:}}_{\Omega \leftrightarrow \text{ Ensemble B}}$$

Simulation set up

Formalism

Angular power spectrum of CR arrival directions:

Simulation set up

Formalism

Angular power spectrum of CR arrival directions:

Simulation set up

Local diffusion tensor strongly anisotropic O(10) in isotropic tubulence for $r_g/l_c \sim 10^{-2}$

Main consequence

$$\frac{C_1}{4\pi} \simeq \mathbf{S}_{ij} \frac{\partial_i n \partial_j n}{n^2}$$

→ Large projection effect of cosmic-ray gardient

$$\frac{C_1}{4\pi} \propto \widehat{\lambda}_1^2 \frac{(\nabla_1 n)^2}{n^2} + \widehat{\lambda}_2^2 \frac{(\nabla_2 n)^2}{n^2} + \widehat{\lambda}_3^2 \frac{(\nabla_3 n)^2}{n^2}$$

Evolution of the tensor with r_g/l_c

ightarrow Increasing projection effect for small r_g/l_c

ightarrow Convergence to isotropic diffusion $r_g/l_c>1$

CR dipole observations

 \rightarrow Rapid phase flip and reduced dipole in the TeV-PeV range

Investigating local diffusion in isotropic turbulence

- → New methodology to study local diffusion (Nested grid & Backtracking)
- \rightarrow In isotropic turbulence local diffusion is strongly anisotropic for $r_g/l_c < 1$
- \rightarrow Evolution with particle rigidity towards isotropy for $~r_g/l_c>1$

Prospects

- \rightarrow Challenges to remove the numerical noise for smaller r_g/l_c
- \rightarrow Other magnetic configurations to probe

CR dipole observations

 \rightarrow Rapid phase flip and reduced dipole in the TeV-PeV range

Investigating local diffusion in isotropic turbulence

- → New methodology to study local diffusion (Nested grid & Backtracking)
- \rightarrow In isotropic turbulence local diffusion is strongly anisotropic for $r_g/l_c < 1$
- \rightarrow Evolution with particle rigidity towards isotropy for $r_g/l_c > 1$

Prospects

- \rightarrow Challenges to remove the numerical noise for smaller r_g/l_c
- \rightarrow Other magnetic configurations to probe

Thank you! Questions? → yoann.genolini@nbi.ku.dk