Systematic X-ray study of GeV Gamma-ray emitting radio galaxy

Hiroto Matake, Yasushi Fukazawa (Hiroshima University)

1. Radio Galaxy

Radio galaxy Blazar

Open problem of AGN • how to emit jet from central engine

how to accelerate jet

8% of all Active galactic nuclei (AGN) emits strong radio emission. radio galaxy blazar

Radio galaxy(RG) weaker beaming effect compared to blazar

→ jet core, accretion disk and the fainter part of jet radiation can be observed

Key to solve these problem
resolve the relation between jet
and accretion disk emission
→RGs is important objects

1. Radio galaxy

The relation between jet and accretion disk emission •we can investigate when we decompose jet and accretion disk emission in SED. \rightarrow constrain the parameters from SED

X-ray both jet and disk/corona

→investigate the contribution from
 jet and accretion disk in the
 X-ray spectra.

We can compare the power between jet and accretion disk, and get information and infer the physical properties of jet.

2. Purpose of research

Purpose of research

Decompose X-ray emission components into jet and disk/corona for GeV gamma-ray radio galaxies

Sample

- 21 objects in 4FGL-DR2 catalog, including
- 61 radio galaxies and observed 4 times by Swift/XRT

previous : about 10 objects	\rightarrow	21 objects		
(There is 8 objects				
in Fukazawa et al. 2015.)	Statistical analy			

Data

gamma:flux, Photon Index(4FGL-DR2 catalog)

X : flux, Photon Index, Hardness ratio(data analysis by

3. X-ray data analysis

①Spectral fitting with single power law model ex) IC 310

②Following in Connolly et al.2016, we introduce Hardness Ratio(HR)

S : photon counts in 0.5 - 2.0 keV H : photon counts in 2.0 - 10.0 keV Hardness Ratio(HR):

$$HR = \frac{H - S}{H + S}$$

4/12

Ave. flux

Ave. photon index

3. X-ray data analysis

All objects show positive slope.

We use slope value to treat quantitatively.

4-1. Result 1

1)Time variation

Gamma-ray flux is relatively low
weak harder-when-brighter trend
→ jet is weak in X-ray?

Gamma-ray flux is relatively high
strong harder-when-brighter trend
→ jet radiation in X-ray is inferred

4-2. Result 2

⁽²⁾Photon Index of X-ray and Gamma-ray

4-2. Result 2

②Photon Index of X-ray and Gamma-ray

4-2. Result 2

②Photon Index of X-ray and Gamma-ray

5. Conclusion Result

	Object	Result① Slope vs flux ratio	Result② P. I.	Accretion rate L _X /L _{Edd}	Radio and Optical Classification
	NGC 1218	jet	jet	< 0.01 →	FR-I / LERG
Jet	3C 264	jet	jet	< 0.01 ↔	FR-I / LERG
dominant	B3 1009+427	jet	jet	> 0.01	FR-II / unk
	3C 111	disk	disk and/or jet	> 0.01	FR-II / HERG
	PKS 0518-45/Pictor A	disk	disk and/or jet	> 0.01	FR-II / HERG
AD	NGC 5128/Cen A	disk	disk and/or jet	> 0.01	FR-I / HERG
dominant	3C 120	disk	disk and/or jet	> 0.01	FR-I / HERG
	B3 0309+411B	disk	disk and/or jet	> 0.01	FR-II / HERG
Jet and AD mixed	PKS 2153-69	disk	disk and/or jet	< 0.01	FR-II / HERG
	PKS 2331-240	disk	disk and/or jet	> 0.01	unk / HERG
	NGC 1316/Fornax A	jet	disk and/or jet	< 0.01 ↔	FR-I / LERG
	PKS 1514+00	jet	disk and/or jet	< 0.01 ↔	FR-I / LERG
	NGC 6251	jet	disk and/or jet	< 0.01 ↔	FR-I / LERG
	NGC 6328	jet	disk and/or jet	< 0.01	unk / unk
	3C 380	jet	disk and/or jet	> 0.01	FR-II / HERG
	3C 309.1	jet	disk and/or jet	> 0.01	FR-II / HERG
	PKS 0521-36	jet	disk and/or jet	> 0.01	FR-II / HERG
	4C +40.01	jet	disk and/or jet	> 0.01	unk / unk
	IC 310	disk	jet	< 0.01 ↔	FR-I / LERG

5. Conclusion

middle accretion rate

Both jet and AD radiation mixed in X-ray

7. Conclusion

Purpose of research

We divide the radiation character either jet or disk in X-ray.

 \rightarrow X-ray spectra of radio galaxy

→Fermi observation in gamma-ray

We can divide 3 radiation type in X-ray,

- Strong harder-when-brighter, and hard spectra in Gamma-ray and soft spectra in X-ray and low accretion rate.
- 2. Weak harder-when-brighter, and soft spectra in Gamma-ray and hard spectra in X-ray and high accretion rate.

→AD dominant type

 \rightarrow jet dominant type

3. Strong harder-when-brighter, and **soft** spectra in Gamma-ray and **hard** spectra in X-ray.

 \rightarrow jet and AD mixed type

予備トラペ

Accretion rate

4-1. Result 1

1time variation

Clearly, there is a group where both slope and flux ratio show low value.

4-1.研究結果 その1

1time variation

Jet and AD mixed type objects is in jet group.

 \rightarrow jet trend appear strongly in this figure.

Flux ratio(Gamma-ray flux / X-ray flux)

4-1. 研究結果 その1

(1)time variation

Seyfert galaxy shows AD spectra in X-ray

■Standard AD → softer-when-brighter trend

Radio galaxy shows jet and AD radiation in X-ray

Jet dominant → strong harder-when-brighter trend

	harder-when-brighter trend		
• AD diominant \rightarrow	+	\rightarrow	weak harder-when-brighter
	softer-when-brighter trend		trend

Thus, this is not clearly divided jet and AD trend, and jet trend is strongly appeared.

他の検出器での解析

