

Study of cosmic ray propagation using GALPROP

Hongyi Wu¹, Eun-Suk Seo¹, Vladimir Ptuskin^{1,2} ¹Univ of Maryland-College Park, MD, USA, ²IZMIRAN, Moscow, Russia

ltem		Case 1	Case 2	Case 3
Diffusion	D_{0xx} (10 ²⁹ cm ² s ⁻¹)	3.0	2.5	3.25
coefficient:				
$D \propto \beta D_{0xx} R^{-D_g}$	D _{q1} ^[1]	0.514	0.51	0.514
1 022	R (GV)	300	-	200
	D _{a2} ^[2]	0.27	-	0.40
Proton source injection: $\Phi \propto R^{-\gamma}$	γ ₁ ^[3]	1.84	1.84	1.84
	R ₁ (GV)	5.78	5.78	5.78
	$Y_{2}^{[4]}$	2.350	2.350	2.330
	R ₂ (GV)	-	500	800
	γ ₃ ^[5]	-	2.035	2.18
Helium source injection: $\Phi \propto R^{-\gamma}$	Y ₁	1.344	1.644	1.644
	R ₁ (GV)	5.78	5.78	5.78
	γ ₂	2.3	2.274	2.274
	R_2 (GV)	-	300	400
	γ ₃	-	2.039	2.099

ltem		Case 1	Case 2	Case 3
Heavy nuclei with Z>2 source injection: $\Phi \propto R^{-\gamma}$	Y ₁	1.864	1.864	1.864
	R ₁ (GV)	5.78	5.78	5.78
	Υ ₂	2.364	2.364	2.364
	R_2 (GV)	-	300	250
	Y ₃	-	2.06	2.18
Electron source injection: $\Phi \propto R^{-\gamma}$	Y ₁	1.63	1.63	1.63
	R ₁ (GV)	5.78	5.78	5.78
	Υ ₂	2.725	2.725	2.725
	R_2 (GV)	-	1000	1000
	γ ₃	-	2.520	2.620

[1] the diffusion coefficient index D_g below the rigidity break R; [2] D_g above the rigidity break; [3] the injection index γ below the first rigidity break R_1 ; [4] γ above R_1 and below R_2 ; [5] γ above R_2 .

Calculated spectra: p, p-, O, and He

Case 1 (diffusion break):

- The diffusion-coefficient break-rigidity calculated for the B/C ratio fit results in a break lower than the observed break in the p spectrum and higher than that in the p- spectrum.
- The diffusion coefficient break producing enough hardening in the p and He spectra does not produce enough hardening in the O and C spectra.

Introducing Lithium Source Injection

Nuclei	Source abundance
¹ H	1.06*10 ⁶
⁴ He	95525.52
¹² C	3154.92
¹² O	4106.8
²⁰ Ne	477.36
²⁴ Mg	622.64
²⁸ Si	726.52
⁵⁴ Fe	36.08
⁷ Li	65.00

 Inconsistency between calculated Li spectrum with data can be fixed by adding primary Lithium [M. J. Boschini, et al. Astrophys. J. 2 (2020): 167]

Case 1, 610MV
Case 1, 0MV
Case 2, 610MV
Case 2, 0MV
Case 3, 610MV
Case 3, 610MV
Case 3, 0MV

7

Calculated spectra: C, B, Li, and Be

Case 2 (source break):

 The source-spectra break that fits the C and O spectral hardening does not produce enough hardening in the B and Be spectra.

- All 3 cases show identical and acceptable agreement with electron data
- The disagreement with data in positron is much more significant

Introducing positron source injection

- Another Galprop run named Case 4 (purple curves) based on Case 3
- Source injection given by:

 $\Phi \propto \mathbf{R}^{-\gamma} \begin{cases} \gamma = 1.83, for \ R \le 5.78 \ GV \\ \gamma = 2.5, for \ 5.78 \ GV \le R < 30 \ GV \\ \gamma = 2.05, for \ R > 30 \ GV \end{cases}$

• Positron source with hardening starting at 30 GV produces e+ spectrum in agreement with data

- We studied three cases introducing a diffusion coefficient break, source injection breaks, and a combination of both.
 - Case 1 (diffusion break): The break-rigidity for the B/C ratio fit results in a break lower than the observed break in the p spectrum and higher than that in the p- spectrum. The break producing enough hardening in p and He does not produce enough hardening in O and C.
 - Case 2 (source break): The break that fits the C and O spectral hardening does not produce enough hardening in the B and Be spectra.
 - Case 3 (Mixed): has correct break rigidities in different elements, fits the hardenings in p, He, C and O spectra, while producing enough hardenings in B and Be spectra simultaneously.
- The spectral hardening supports the existence of a primary Lithium source with an abundance of 65 (relative to the proton source abundance 1.06*10⁶).
- The hardening in positron cannot be explained with all 3 cases we studied but can be fitted by introducing a primary positron under the same diffusion coefficient settings in case 3. This positron source has a rigidity break at 30 GV at which the injection index changes from 2.5 to 2.05.