Study of the solar modulation for the cosmic ray isotopes with the PAMELA experiment

> Alex Lenni¹²³ on behalf of the PAMELA collaboration

¹University of Trieste, Department of Physics, Trieste (Italy) ²Istituto Nazionale di Fisica Nucleare (INFN), Section of Trieste, Trieste (Italy) ³Institute for Fundamental Physics of the Universe (IFPU), Trieste (Italy)

37th International Cosmic Ray Conference Berlin (on-line), 12-23 July 2021

37th ICRC, Berlin (on-line), 12-23 July 2021 Study of the solar modulation for the cosmic ray isotopes with the PAMELA experiment

The PAMELA experiment

Solar modulation of cosmic rays

Interaction of cosmic rays with the solar wind and the heliospheric magnetic field

Solar Modulation effects

Decrease of the cosmic ray intensity below few tens of GeVs

Sophisticated numerical models have been introduced in the recent years

37th ICRC, Berlin (on-line), 12-23 July 2021

Time dependence of cosmic ray fluxes as a function of the

solar activity

Modulation of the Local Interstellar Spectrum of the cosmic rays to reproduce the measurements inside the Heliosphere

Study of the solar modulation for the cosmic ray isotopes with the PAMELA experiment

Solar modulation of the H and He isotopes

- ²H and ³He isotopes are generated by the interaction of the primary ¹H and ⁴He with the interstellar medium. Their spectrum is determined by the primary one and the propagation mechanisms.
- Below few tens of GeVs the fluxes are affected by the solar modulation. Measurements of the time dependence of the low energy fluxes provide important information about the propagation mechanisms in the Heliosphere.

Selection of the isotopes ¹H and ²H

1) Selection of a sample of events with a single track reconstructed with good quality inside the Tracker.

2) Charge selection: dE/dX measurements in the first four ToF layers as a function of the velocity $\beta = v/c$.

3) Isotopic separation:

Truncated mean of the dE/dX measurements in Tracker and ToF

Protons and deuterons dE/dX distributions in Tracker as a function of rigidity

Additional selection of deuterons on the ToF dE/dX distribution as a function of rigidity

Study of the solar modulation for the cosmic ray isotopes with the PAMELA experiment

Selection of the isotopes ³He and ⁴He

1) Selection of a sample of events with a single track reconstructed with good quality inside the Tracker.

2) Charge selection: dE/dX measurements in the Tracker as a function of the rigidity.

3) Isotopic separation:

 β measurements by ToF e dE/dX measurements by Calorimeter

ToF: $\beta - \rho$ distributions

Calorimeter: truncated mean of the dE/dX for no interacting events

Flux calculation:

 $\Phi(\rho) = \frac{n(\rho)}{\Delta \rho \cdot \varepsilon(\rho) \cdot G(\rho) \cdot T(\rho)}$

 $\succ n(\rho)$ number of events per rigidity bin

- $\succ \Delta \rho$ width of the rigidity bin
- $\succ \varepsilon(\rho)$ efficiency of the total selection

 $\succ G(\rho)$ geometric factor

Reduced values with respect to the nominal values accounting for the effects of scattering and fragmentation in the materials above the Tracker.

Flux calculation:

$$\Phi(\rho) = \frac{n(\rho)}{\Delta \rho \cdot \varepsilon(\rho) \cdot G(\rho) \cdot T(\rho)}$$

- $\succ n(\rho)$ number of events per rigidity bin
- $\succ \Delta \rho$ width of the rigidity bin
- $\succ \varepsilon(\rho)$ efficiency of the total selection
- $\succ G(\rho)$ geometric factor
- $\succ T(\rho)$ live time
- > Unfolding

Reconstruction of the spectrum at the top of the payload

Results: ¹H and ²H fluxes

Time dependence due to the solar modulation:

 \succ increase of the fluxes from 2006 to 2009 (solar minimum phase),

decrease of the fluxes from 2009 to 2014 (solar maximum phase).

Results: ³He and ⁴He fluxes

Time dependence due to the solar modulation:

- increase of the fluxes from 2006 to 2009 (solar minimum phase),
- decrease of the fluxes from 2009 to 2014 (solar maximum phase).

37th ICRC, Berlin (on-line), 12-23 July 2021 Study of the solar modulation for the cosmic ray isotopes with the PAMELA experiment

Results: ratio ²H/¹H and ³He/⁴He

Time variation of the ²H/¹H and ³He/⁴He ratios due to the solar modulation:

- decrease of the ratios with the solar activity reduction (minimum in 2009),
- growth of the ratios with the increase of the solar activity (maximum in 2014).

Measured fluxes compared with expectations from a stateof-the-art model for CR propagation in the Heliosphere

Measured ²H fluxes in 2006 and 2009 (solar minimum phase) compared with expected fluxes from a state-of the-art model of CR solar modulation of a starting modelled LIS.

See also talks 262 and 264 presented by Dr. Ngobeni

37th ICRC, Berlin (on-line), 12-23 July 2021 Study of the solar modulation for the cosmic ray isotopes with the PAMELA experiment

Conclusions:

Yearly fluxes of ¹H, ²H, ³He, ⁴He in cosmic rays have been obtained for the time period from 2006 to 2014.

- The ²H/¹H and ³He/⁴He ratios decrease during solar minimum phase and increase during solar maximum phase.
- The explanation of this time variation can be related to both a velocity dependence of the diffusion coefficients and by the different spectral shape of the LIS.
- Numerical models of propagation of cosmic rays in the Heliosphere are being used to understand time variation of the ratios.