Gamma-ray performance study of the HERD payload

L. Fariña (IFAE-BIST) for the HERD Collaboration
Other authors: L. Jouvin, J. Rico, N. Mori, F. Gargano, V. Formato, F. de Palma,
C. Pizzolotto, J. Casaus, M. N. Mazziota, X. Wu, P. Bordas, D. Gascón, D. Sukhonos,
A. Tykhonov, C. Altomare, L. Silveri, D. Gasparrini

July 12, 2021

L. Fariña (IFAE-BIST)

HERD: γ performance

Outline

1 Introduction

- 2 Detector geometry overview
- In MC simulation strategy
- 4 Effective area

5 PSF

6 Sensitivity

Conclusions

- *Fermi*-LAT:
 - already $>10 \, \text{yr}$, $>5000 \, \text{sources}$ detected
 - Fermi bubbles
- Need continuity of space observations
- Work with next generation of ground observatories (CTA, LHAASO)
- Also current and future generation of observatories in other messengers (IceCube, KM3NeT, LIGO/Virgo, ...)

HERD: the High Energy Radiation Detector

- γ , e^-, CR detector
- ullet To be installed \sim 2027 on the CSS
- HERD Collaboration:
- γ energy resolution down to 1% at 200 GeV, γ PSF down to 0.1 deg at 10 GeV
- Science goals (γ) :
 - Search for DM
 - Transients monitoring, alert & followup (GRBs, GWs,...)
 - Disentanglement of Galactic point-source/diffuse emissions

Geometry and Subdetectors¹

 $\begin{array}{c} {\sf SCD} \ {\sf Charge\ reconstruction} \\ {\sf PSD\ } {\sf Charge\ reconstruction}, \\ \gamma\ identification \\ {\sf FIT\ } {\sf Direction\ reconstruction}, \\ charge\ identification \\ {\sf CALO\ } {\sf Energy\ reconstruction}, \\ e/p\ discrimination \\ {\sf TRD\ } {\sf Calibration\ of\ CALO\ to\ TeV\ p} \end{array}$

¹More details in F. Gargano's Highlight Talk "The High Energy cosmic-Radiation Detection (HERD) facility on board the Chinese Space Station: hunting for high-energy cosmic rays"

L. Fariña (IFAE-BIST)

HERD: γ performance

- Produced using the official HerdSoftware toolset
- GGS (based on Géant4)
 - $\bullet~$ Generate uniform $\gamma~$ flux
 - Determine interactions and energy depositions according to detector geometry
- EventAnalysis framework
 - Digitize signals in each subdetector
 - General analysis
- Samples:
 - Two runs for faces Z ("top") and Ypos ("lateral")
 - Energy range: 0.01–100 GeV
 - Total: $4 imes 10^7 \ \gamma s$

- Enter through the face under study
- Conversion happens inside the FIT
 - Conversion point from MC truth
- Enough hits in FIT to reconstruct the track
 - At least 3 hits for the e^- , e^+ in X/Y layers
- $\bullet\,>50\%$ energy deposition in CALO

$$A_{eff}(E, heta) = rac{N_{sel}(E, heta)}{N_{gen}(E, heta)} A_{gen}(heta)$$

 \vec{n}

SCD

PSD

FIT

A

(Acceptance $\sim 10-20x$ lower than *Fermi*-LAT's; HERD has no W foils but better FOV)

- Retrieve the e^+e^- pair's interactions with the sensitive FIT elements from the MC truth
- \bullet Look for pairs of hits on consecutive X/Y layer pairs
- $\bullet\,$ Smear their positions to a precision of 250 μm
- Reconstruct a combined hit:
 - Normal coordinate: average for both layers
 - Coordinates in detector plane: from the layer sensitive to it
- Fit two lines to the points from the e^+ and the e^-
- \bullet Average both tracks to obtain the reconstructed γ track
- $\bullet\,$ Calculate the angle between the reconstructed and the true γ tracks
- Report the 68% containment fraction

PSF results

- \bullet Differential sensitivity: minimum flux for a 5 σ detection in a certain energy bin
- Four bins per decade
- Require at least 10 $\gamma {\rm s}$ to report detection
- Source: point-like, PL with index 2
- Background:
 - Fermi galactic emission model gll_iem_v07.fits
 - Fermi isotropic bkg P8R3_SOURCE
- Using HERD A_{eff}
- Using Fermi PSF3 as it is most similar to HERD one

HERD sensitivity to low-E gamma-rays

HERD, Point Source, PL index=2, TS=25, > 10 photons/bin, 4 bin/dec

HERD 5-year skymap

- $\bullet\,$ We have determined HERD baseline capabilities for gamma-ray detection in the range ${\sim}30\,\text{MeV}$ 100 GeV
- To be done: detector optimization + gamma-ray specific trigger
- HERD will have 5 sensitive faces and very wide field of view
- HERD will feature superior energy and angular resolutions
- HERD will be the reference gamma-ray instrument in space in the CTA+LHAASO era