THE HIGH ENERGY PARTICLE DETECTOR (HEPD-02) FOR THE SECOND CHINA SEISMO-ELECTROMAGNETIC SATELLITE (CSES-02)

Cristian De Santis (INFN) and Sergio Bruno Ricciarini (IFAC-CNR) on behalf of the CSES-Limadou Collaboration

37th International Cosmic Ray Conference (ICRC 2021) July 12th – 23rd, 2021 Online – Berlin, Germany

CSES MISSIONS – SCIENTIFIC OBJECTIVES

- Monitoring of the electromagnetic near-Earth space environment
- Analysis of the ionospheric and plasmaspheric fluctuations
- Measurements of iono-magnetospheric perturbations possibly due to seismo-electromagnetic phenomena
- Study of fluxes of high & low energy charged particles precipitating from the Inner Van Allen radiation belt
- Measurements of magnetospheric and solar activity
- Monitoring of the e.m. anthropic effects at LEO altitude
- •Observations of e.m. transient phenomena caused by tropospheric activity

CSES MISSION – CSES-01

Launched into a sun-synchronous circular orbit (97.4°) on February 2nd, 2018 at an altitude of 507 km in the upper ionosphere [Shen, X.et al., Science China Technological Sciences, vol. 61, no. 5, pp. 634-642, May 2018]

Payloads	Parameters	Status
High Precision Magnetometer (HPM): Two flux gate + one coupled dark state magnetometer (CDSM)	DC to 16 Hz	Good health condition Excellent performance
Search-Coil Magnetometer (SCM)	10 Hz ~20 kHz	Good health condition and performance
Electric field detector (EFD)	DC~3.5 MHz	ULF/ELF/VLF good, HF band with high noises
Plasma analyzer package(PAP)	Ion density : $10^2 \sim 10^7$ cm ⁻³ Ion temperature: 500~10000 K Ion content: H ⁺ 、 He ⁺ 、 O ⁺ Ion drift velocity: Vxyz	Contamination mechanism and cause of contamination still in evaluation
Langmuir probe (LAP)	Electron density: 1 0 ² ~10 ⁷ cm ⁻³ Electron temperature: 500~10000K	Good health condition and performance
GNSS Occultation Receiver (GOR)	TEC、Ne Profile	Good health condition and performance
Tri-Band Beacon (TBB) : Three bands: 50/400/1066MHz	Air Refraction index, Profile of air temperature and pressure Ionospheric scintillation index	400 MHz band malfunction data processing algorithm and ground receivers not finished
Energetic particle detector (HEPP-H, L, X ray)	Proton flux: $1.5 \text{MeV} \sim 200 \text{MeV}$ Electron flux: $\geq 100 \text{keV}$ Pitch angle : 5° HEPP-X: 0.9–35 keV	Good health condition and performance

Good health condition

 \mathbf{D}

Proton flux: 30- 100 MeV

Electron : 30 - 200 Mev :

Italian Energetic particle detector

(HEPD)

Credits: Z. Zhima (NINH)

CSES-01 - HIGH ENERGY PARTICLE DETECTOR (HEPD)

- The High-Energy Particle Detector (HEPD) onboard CSES-01 measures the increase of the electron and proton fluxes due to short-time perturbations of the radiation belts caused by solar, terrestrial and anthropic phenomena [*Picozza, P. et al., Astrophys. J. Suppl. 2019, 243, 16*]
- The energy range explored is 3 100 MeV for electrons and 30 200 MeV for protons
- High Energy Particle Detector is installed on the satellite with its entrance window pointing to the zenith

HEPD-01 installed on-board CSES-01 (Credits: DFH)

A PARTICLE DETECTOR FOR IONOSPHERE-LITHOSPHERE COUPLING STUDIES

- •The lithosphere may produce EM perturbations that can propagate in the ionosphere and inner magnetosphere
- •An earthquake is a sudden perturbation that can induce e.m. and particle signals in the ionosphere/lower magnetosphere

- **Electro-Magnetic Emission (EME)**
- **Natural emissions (earthquakes and volcanic eruptions)**
- Anthropogenic emissions (PLHR, VLF & HF transmitters)
- **ULF EME: wave-trapped particle interaction?**

TRAPPED PARTICLE MOTION IN THE VAN ALLEN RADIATION BELTS

A

B

C

WAVE-PARTICLES INTERACTION MECHANISM

CORRELATIONS BETWEEN EQ AND PB: ΔT_{EO-PB} DISTRIBUTION

80-

GAMMA-1

MIR mission 1985-2000 Altitude: 400 km Inclination: 51° E_e: 20-200 MeV E_p: 20-200 MeV

METEOR-3 mission 1985-1986 Altitude: 1250 km Inclination: 82° $E_{e}: \leq 30 \text{ MeV}$

-2 🖥

dT=Te-Tb, hour

246

8 10 12

ELECTRON

30

20

10

-12-10 -8 -6 -4

ORR ∆T_{EQ-PB} (s) (Orbit Rate Rotation; July 1992 - May 1994) **SAMPEX/PET** mission 1992-1999 Altitude: 520-740 km Inclination: 82°

of EO-PB

relation

 $4 \leq E_e \leq 15 \text{ MeV}$

CSES-02 MISSION

CSES-02 SATELLITE

- Launch scheduled by the end of 2022
- □ Same DFH CAST-2000 platform of CSES-01 with some upgrades
- Earth oriented 3-axis stabilization system with orbit maneuver capability
- **X-Band Data Transmission,120Mbps**
- Storage 160Gb/512Gb
- Total Mass: 730kg/900kg
- Peak Power Consumption: ~900W
- Design Life-span: 5 Years/6 Years
- Complementary Ground Track wrt CSES-01
- ➢Identical Orbit Plane
- ▶180°Phase Difference
- Operation mode: Full time operational

Credits: Z. Zhu (DFH)

CSES-02 – PAYLOAD CONFIGURATION

Category	Payload Name	Observation Targets
Energetic Particle	High Energy Particle Detector (Italy) Low Energy Electron Spectrometer	Proton : 2MeV~200MeV Electron : 30keV~50MeV
Electro-Magnetic Field	Electric Field Detector (Italy)	Electric Field: DC \sim 3.5MHz
	High Precision Magnetometer	Magnetic Field: DC \sim 15Hz
	Search Coil Magnetometer	Magnetic Field: 10Hz \sim 20kHz
In Situ Plasma	Plasma Analyzer Package	Composition : H^+ , He^+ , O^+
		$N_i: 5 \times 10^2 \sim 1 \times 10^7 cm^{-3}$
		<i>T_i</i> : 500K~10000K
	Langmuir Probe	$N_e: 5 \times 10^2 \sim 1 \times 10^7 cm^{-3}$
		$T_e: 500K \sim 10000K$
Plasma Profile	GNSS Occultation Receiver	TEC by GNSS Occultation Signal
	Tri-Band Beacon	TEC by transmit VH/U/L Signal
	Ionospheric Photometer	135.6nm and N_2 LBH airglow

HEPD-02 ON-BOARD CSES-02

HEPD-02 MAIN REQUIREMENTS

Operating temperature	-10 °C ÷ +35 °C
Operating pressure	$\leq 6.65 \cdot 10^{-3} \text{ Pa}$
Data budget	$\leq 100 \text{ Gb/day}$
Mass budget	$\leq 50 \text{ kg}$
Power budget	$\leq 45 \mathrm{~W}$
Electron kinetic energy range	3 MeV ÷ 100 MeV
Proton kinetic energy range	30 MeV ÷ 200 MeV
Angular resolution	$\leq 10^{\circ}$ for e^- with E > 3 MeV
Energy resolution	$\leq 10\%$ for e^- with E > 5 MeV
Pointing	Zenith
Scientific data bus	RS-422
Data handling bus	CAN 2.0
Life cycle	> 6 years

HEPD-02 SYSTEM ARCHITECTURE

HEPD-02 DETECTOR LAYOUT

TRigger plane TR1 (overall dimensions 200x180 mm²) segmented in 5 plastic scintinllator bars (2 mm thick);

Direction Detector DD ("tracker") made of five standalone tracking modules ("turrets"), each composed of three sensitive planes ("staves");

TRigger plane TR2 (overall dimensions 150 x 150 mm²)
Energy Detector ED ("calorimeter") composed of:

- 12 plastic scintillator planes (150 x 150 x 10 mm³);
- 2 crystal (LYSO) scintillator planes (overall dimensions 150 x 150 mm² segmented in 3 bars (50 mm thick);

Containment Detector CD surrounding the calorimeter on 5 sides, made of plastic scintillator planes (4 lateral and 1 bottom plane), 8 mm thick.

Plastic scintillators: Eljen EJ-200; PMTs: Hamamatsu R9880-

HEPD-02 DETECTOR DESIGN

- HEPD-02 designed to meet the scientific requirements (energy range, energy and angular resolution)
- Particular attention paid to the electron and proton angular and energy resolution in the explored energy range
- Given the demanding mechanical constraints, the detector has been carefully studied to obtain an optimal trade-off between active materials and support structures along the vertical axis

Superposition between a TR1 bar (removed from figure) and the underlying DD ALPIDE stave

Second trigger plane TR2 on top of the ED calorimeter

HEPD-02 PERFORMANCE - ENERGY RANGE

- The scientific performance of HEPD-02 has been evaluated by means of a Geant4 simulation for an isotropic incoming flux of electrons and protons on top of the instrument
- The energy range requirement is met both for electron (3 MeV ÷ 100 MeV) and proton (30 MeV ÷ 200 MeV)
- The low energy threshold is limited by the mechanical constraints on the stiffness of the detector support layers, given by the structural requirements to sustain mechanical stresses at launch

HEPD-02 PERFORMANCE – ENERGY AND ANGULAR RESOLUTION

- Energy resolution: relative difference between true initial kinetic energy and reconstructed kinetic energy (selected sample)
- Electron energy uncertainty <10% for kinetic energies >5 MeV in compliance with the mission requirement
- Angular resolution: distribution of the angle between incoming electron direction reconstructed in the DD and true direction (selected sample)
- Angular resolution better than 10° for the larger part of the electron events with kinetic energies above 5 MeV in compliance with the mission requirement

CONCLUSIONS

- The High Energy Particle Detector (HEPD-02) is being developed to be launched on-board of the second China Seismo-Electromagnetic Satellite (CSES-02) by the end of 2022
- HEPD-02 will be capable of detecting individual incident particles and:
 - identifying type (proton, electron, nucleus)
 - measuring energy
 - determining pitch angle
- HEPD-02 main purpose: identifying particle burst from the stability bands of the Van Allen internal belt to find possible temporal correlations with terrestrial seismic events
- HEPD-02 architecture is the result of an optimized trade-off between scientific objectives of the mission and technical requirements for high-reliability operation in space environment
- Simulation demonstrate that HEPD-02 performance is expected to meet the mission requirements