

COSMIC RAY HELIUM SPECTRUM MEASURED BY THE DAMPE EXPERIMENT

Margherita Di Santo*, Peng-Xiong Ma, Antonio Surdo, Chuan Yue and Ya-Peng Zhang On behalf of the DAMPE Collaboration

*Speaker: margherita.disanto@gssi.it

The DArk Matter Particle Explorer

DAMPE is a satellite-borne particle detector proposed in the framework of the Strategic Pioneer Program on Space Science, promoted by the Chinese Academy of Sciences (CAS).

- ► LAUNCH: 17th Dec. 2015, CZ-2D rocket
- ➢ ALTITUDE: 500 km
- PERIOD: 95 minutes
- ORBIT: Sun-synchronous
- $\blacktriangleright \quad \text{LIFETIME} > 3 \text{ years}$

PHYSICS GOALS

- Study of Cosmic Ray composition, origin and propagation
- Search for Dark Matter signatures in lepton and photon spectra
- High Energy Gamma-Ray Astronomy

영상 사람은 영상에 잘 사망을 가 못했다.

- Purple Mountain Observatory
- University of Science and Technology
- Institute of High Energy Physics
- Institute of Modern Physics
- National Space Science Center

- INFN Lecce and University of Salento
- INFN Bari and University of Bari
- INFN Perugia and University of Perugia
- INFN LNGS and Gran Sasso Science Institute

Geneva University

The DAMPE detector

J. Chang et al., Astrop. Phys. 95 (2017) 6-24

82 plastic scintillator bars EJ-200 (Eljen Technology Corporation)

Plastic Scintillator Detector (PSD) 2 planes with double layer configuration (2D)

 γ -RAY VETO

Silicon Tungesten tracKer-converter (STK)

- 6 planes with 2 single-sided silicon layers
- 3 thin tungsten layers (for γ conversion in e⁺/e⁻)

TRACK RECONSTRUCTION

- \Box spatial resolution <70 μ m for CR (θ_{inc} < 60°)
- \Box angular resolution ~0.2° for γ at 10 GeV
- CHARGE MEASUREMENT ($Z \propto \sqrt{ADC}$)

BGO Calorimeter (BGO)

- 14 layers, each one with 22 bars of $Bi_4Ge_3O_{12}$,~32 X₀
- ENERGY MEASUREMENT
 - \Box I GeV 10 TeV for electrons and γ
 - □ 50 GeV 100 TeV for nuclei

NeUtron Detector (NUD)

- I layer, 4 boron-doped plastic scintillators
- DETECTION OF NEUTRONS generated in the BGO for hadron/e.m. showers discrimination

Data Sample

□ ON-ORBIT DATA SAMPLE:

GEANT4 FTFP_BERT from 10GeV to 100TeV

CRMC-GEANT4 from 100TeV to 1PeV

Event selection (I)

E_{dep}> 20 GeV inside the BGO calorimeter && High Energy Trigger Activation

South Atlantic Anomaly events exclusion

Nhits>=3 && Chi2Ndof< 35 && Maximum total ADC of track

 Δ_{diff} <25 mm between STK and first 4 BGO layers, Δ_{diff} <90 mm between BGO and STK track on the PSD

Selected STK track crossing the full detector

Elayermax<35% && Top-down development of the shower

1° laver	
2° laver	
3° laver	
4° layer	

MARGHERITA DI SANTO – COSMIC RAY HELIUM SPECTRUM MEASURED BY THE DAMPE EXPERIMENT – ICRC2021

Event selection (II)

Three independent charge measurements provided by the 2 layers of the PSD and by the first layer of the STK.

PSD Charge Selection : 1.85 + 0.02 $log \frac{E_{dep}}{10 \ GeV} < Z_{Y(X)} < 2.8 + 0.007 \left(log \frac{E_{dep}}{10 \ GeV} \right)^4$

STK Charge Selection : ADC_{firstpoint} > 120

1st 2nd

1st layer 2nd layer

According to the Bethe-Bloch formula, the energy released through ionization inside the PSD by a crossing CR is proportional to the square of its charge.

BETHE-BLOCH FORMULA

$$\frac{dE}{dx} \propto Z^2$$

Systematics: Proton background

Template-Fit based on MC simulation data. Systematic uncertainty due to proton background σ_{bg} :

proton background ranges from ~0.05% for deposited energy of 20 GeV to ~4% for 60 TeV

Systematics: High Energy Trigger efficiency

Unbiased Trigger: E_{dep}>0.4 MIPs in first 2 BGO layers

Pre-scaling factors of Unbiased Trigger:

- 1/512 in the latitude range [-20°;20°]
- 1/204 at higher latitudes

$$\varepsilon_{HET} = rac{N_{HET|Unb}}{N_{Unb}}$$

- $N_{HET|Unb}$: HE & Unb triggers activated
- N_{Unb} : Unb trigger activated

Systematic uncertainty due to HET:

 $\sigma_{HET} \sim 4\%$ up to ~ 1 TeV

ENTRY Systematics: Track reconstruction efficiency

$$\varepsilon_{Track} = \frac{N_{PSD|STK|BGO}}{N_{PSD|BGO}}$$

- N_{PSD|STK|BGO} : number of events selected by the analysis
- N_{PSD|BGO} : number of events selected by using track information provided only by PSD and BGO

Systematic uncertainty due to Track selection:

 σ_{Track} found to be within 0.5% up to 100 TeV

Systematics: Charge reconstruction efficiency

Charge reconstruction efficiency computed for both the PSD layers separately with the help of the 1st STK layer.

Combined systematic uncertainty due to Charge reconstruction:

 $\sigma_{charge} \sim 3.5\%$ up to 10 TeV

Effective Acceptance

Differential flux in the *i*-th bin of primay energy:

$$\Phi(E_i, E_i + \Delta E_i) = \frac{\Delta N_i}{\Delta E_i A_{\text{eff}, i} \Delta T}$$

- ΔN_i : number of detected incident helium nuclei in the *i*-th primary energy bin of width E_i
- ΔT : is the total detector livetime which is $1.08 \cdot 10^8$ s
- A_{eff,i} : effective acceptance of the DAMPE detector as a function of the primary energy for the incoming CR helium nuclei at a given *i*-th bin of incident energy

$$\mathbf{A}_{\mathrm{eff},i} = \mathbf{A}_{\mathrm{gen}} \times \frac{\mathbf{N}_{\mathrm{pass},i}}{\mathbf{N}_{\mathrm{gen},i}}$$

- A_{gen}: geometrical factor used in MC simulation of an isotropic CR helium flux generated above a sphere with R=1.0 m
- N_{gen,i}: total number of generated events in the *i*-th of primary energy
- N_{pass,i}: number of events selected by the the analysis, in a given *i*-th of primary energy

Unfolding procedure for energy estimate

We use an *Unfolding* procedure by adopting a *Bayesian* method.

G. D'Agostini, Nucl. Instrum. Meth. A 362 (1995)

The limited thickness of the DAMPE calorimeter (~ 1.62 nuclear interaction lengths) significantly affects the energy response. In fact, only a part of the total particle energy is deposited inside the detector (~ 40% at 10 TeV), decreasing with the true energy due to a deeper development of the showers inside the calorimeter.

Helium energy spectrum

Inner deshed band: $\sigma_{ana} = \sqrt{\sigma_{HET}^2 + \sigma_{Charge}^2 + \sigma_{track}^2 + \sigma_{bg}^2 + \sigma_{unf}^2 + \sigma_{iso}^2}$

 $\sigma_{iso}^2 \sim 0.2\%$ isotope uncertainty obtained by varing the ratio of He³ and He⁴ measured by AMS-02 by 5%.

 $\sigma_{unf} \sim 1\%$ unfolding uncertainty evaluated both re-weighting the MC simulations by varying the spectral index from 2.0 to 3.0 and checking the differences with the result obtained by repeating the analysis with 14 BGO layers.

Outer shaded band: $\sqrt{\sigma_{ana} + \sigma_{had}}$, σ_{had} obtained from the comparison with FLUKA MC simulations.

The DAMPE measurement of the helium energy spectrum confirms the observation of a spectral hardening at TeV-energies previously highlighted by other experiments and clearly shows an evidence of a spectral softening at tens of TeV.

Helium energy spectrum

Error bars: statistical uncertainties

Inner deshed band: $\sigma_{ana} = \sqrt{\sigma_{HET}^2 + \sigma_{Charge}^2 + \sigma_{track}^2 + \sigma_{bg}^2 + \sigma_{unf}^2 + \sigma_{iso}^2}$

 $\sigma_{iso}^2 \sim 0.2\%$ isotope uncertainty obtained by varing the ratio of He³ and He⁴ measured by AMS-02 by 5%.

 $\sigma_{unf} \sim 1\%$ unfolding uncertainty evaluated both re-weighting the MC simulations by varying the spectral index from 2.0 to 3.0 and checking the differences with the result obtained by repeating the analysis with 14 BGO layers.

Outer shaded band: $\sqrt{\sigma_{ana} + \sigma_{had}}$, σ_{had} obtained from the comparison with FLUKA MC simulations.

The DAMPE measurement of the helium energy spectrum confirms the observation of a spectral hardening at TeV-energies previously highlighted by other experiments and clearly shows an evidence of a spectral softening at tens of TeV.

Helium flux fit - Softening

By comparing the implications of this result with the softening observed by DAMPE in the proton energy spectrum at ~13.6 TeV, it turns out a charge-dependent softening energy, even if a mass-dependence of the structure cannot be ruled out.

Fit of the softening structure with a Smoothly Broken Power-Law (SBPL) in the energy range [6.8 TeV - 80 TeV].

$$\Phi(E) = \Phi_0 \left(\frac{E}{\text{TeV}}\right)^{\gamma} \left[1 + \left(\frac{E}{E_b}\right)^{s}\right]^{\Delta \gamma/\omega}$$

$$E_b = 34.4^{+6.7}_{-9.8} \text{ TeV}$$

$$\gamma = 2.41^{+0.02}_{-0.02}$$

$$\Delta \gamma = -0.51^{+0.18}_{-0.20}$$

$$s = 5.0 (fixed)$$

Significance of the softening: $\sim 4.3~\sigma$

Conclusions

- The measurement of the Galactic CR Helium flux from 70 GeV up to 80 TeV has been obtained by analyzing the on-orbit data provided by the DAMPE satellite during 54 months of data-taking
- The result shows a good agreement with other experiments within the uncertainties
- A spectral *hardening* has been observed, confirming previous results by other experiments but with higher energy resolution
- > A *softening* structure has been clearly observed at energy $E_b \sim 34$ TeV for the first time with a significance of ~4.3 σ
 - This measurement has been validated by three independent analyses which are consistent within the analysis uncertainty

Thank you!

MARGHERITA DI SANTO – COSMIC RAY HELIUM SPECTRUM MEASURED BY THE DAMPE EXPERIMENT – ICRC2021

11. S