

Every Flare, Everywhere: An All-Sky Untriggered Search for Astrophysical Neutrino Transients Using IceCube Data

F. Lucarelli & W. Luszczak for the IceCube collaboration

IceCube: Signal and Background

We present an untriggered, unbiased search for multi-flare transient sources of astrophysical neutrinos with IceCube

Northern hemisphere

IceCube is a km³ high-energy neutrino telescope located at the South Pole

SIGNAL

Muons from astrophysical neutrinos (10 evts/year)

BACKGROUND

- Muons from atmospheric neutrinos (10 evts/hour) Dominant background in northern hemisphere
- Atmospheric muons (10⁷ evts/hour) Dominant background in southern hemisphere

Analyses Overview

Multi-flare Algorithm

Two variants of the multi-flare algorithm are applied:

1. High-statistics

- It includes low-significance flares
- High sensitivity to sources flaring several times, low sensitivity to sources flaring few times

2. <u>High-purity</u>

- Tighter quality selection applied to remove low-significant flares
- High sensitivity to sources flaring few times, low sensitivity to sources flaring several times

High-Statistics Analysis: Methods

30 Box flare hypothesis 25 Toy plot 20 Fit every flare possible, seeded by nearby S 15 10 energetic events Remove flares with TS<0 55000 55500 56000 56500 57000 57500 MID Remove flare fits that overlap 30 25 Sum the TS of the remaining flares 20 IS. 15 10 Total events in sample Total signal-like events in flare *j* 55000 56000 55500 56500 57000 57500 MID $\mathcal{L}_j(n_{s,j}, \gamma_j, t_{0,j}, \Delta t_j) = \prod_{i=1}^{n} \frac{n_{s,j}}{N} S_{i,j} + (1 - \frac{n_{s,j}}{N}) B_{i,j}$ 25 20 S 15 10 i=155000 55500 56000 56500 57000 57500 MID $B_i = \frac{1}{\Omega \wedge T} \mathcal{E}(E_i | Atm)$ $S_i = R_i(\vec{r_i}|\vec{r_o}) \times \mathcal{E}(E_i|\gamma) \times \mathcal{T}(t_i|t_o,\Delta t)$

High-Statistics Analysis: Methods

- Box flare hypothesis
- Fit every flare possible, seeded by nearby energetic events
- Remove flares with TS<0
- Remove flare fits that overlap
- Sum the TS of the remaining flares

$$\mathcal{L}_{j}(n_{s,j},\gamma_{j},t_{0,j},\Delta t_{j}) = \prod_{i=1}^{N} \frac{n_{s,j}}{N} S_{i,j} + (1 - \frac{n_{s,j}}{N}) B_{i,j}$$

$$TS_j = -2\log\left[\frac{\Delta T_{data}}{\Delta t_j} \times \frac{L_j(\mathbf{x_s}, n_s = 0)}{L_j(\mathbf{x_s}, \hat{n}_s)}\right]$$

High-Purity Analysis: Methods

5 independent IceCube samples (different data selection, effective areas)

Likelihood of each sample *k*:

High-Purity Analysis: Methods

High-Purity Analysis: Methods

10-year likelihood:
$$\mathcal{L} = \prod_{k} \mathcal{L}^{(k)}$$

Test Statistic:
 $TS = -2 \log \left[\frac{1}{2} \left(\prod_{j=\text{flares}} \frac{10\text{-year livetime}}{\hat{\sigma}_{T,j}I\left[\hat{t}_{0,j},\hat{\sigma}_{T,j}\right]} \right) \times \frac{\mathcal{L}(\vec{n}_{s} = \vec{0})}{\mathcal{L}(\vec{n}_{s},\vec{\gamma},\vec{t}_{0},\vec{\sigma}_{T})} \right]$

$$\int_{T_{live}} \frac{1}{\sqrt{2\pi}\sigma_{T,j}} \exp \left[-\frac{(t-t_{0,j})^{2}}{2\sigma_{T,j}^{2}} \right] dt$$
Maximum likelihood

The number of flares is selected similarly to the high-stat analysis, but requiring single-flare TS>2

The two multi-flare variants are each used for two searches in each hemisphere:

Hottest spot search

It looks for the most significant spot (hottest spot):

- a. A p-value p_{val} is calculated from all pixels in the sky
- b. The smallest p_{val} in each hemisphere is selected and corrected for trials

Population test

It looks for an excess of sub-threshold hot spots

- a. Cumulative number of hot spots with $p_{val} < p_{thr}$ is calculated
- b. A p-value for this test is calculated for several p_{thr} assuming binomial (high stat variant) or Poissonian (high-purity variant) statistics
- c. The smallest p-value in each hemisphere is selected and corrected for trials

High-Statistics Analysis: Skymap

High-Statistics Analysis: Hottest Spot

F. Lucarelli, W. Luszczak

Untriggered search for astrophysical neutrino transients with IceCube

High-Statistics Analysis: Hottest Spot

- Most significant southern sky pixel:
 - RA, dec = 126.21°, -23.81°
 - p (pre-trial) = 3.54×10^{-7}
 - p (post-trial) = 0.06

Multi-Flare Hotspot, Southern Sky

80

70

60

Frequency 30 Background Trials

Data (p = 0.06)

High-Statistics Analysis: Brightest Individual Flares

- Northern sky:
 - RA, Dec = 21.97°, -0.60°
 - p (pre-trial) = 5.09 × 10^{-6}
 - p (post-trial) = 0.82
- Southern sky:
 - RA, Dec = 311.66°, -18.84°
 - p (pre-trial) = 3.55×10^{-7}
 - \circ p (post-trial) = 0.53

High-Statistics Analysis: Population Analysis

- Binomial tests of multiflare hot spots (>1 degree separation) reveal no significant population excess
 - North: k = 1, p = 0.98
 - South: k = 1, p = 0.12

High-Purity Analysis: Sky Map

High-Purity Analysis: Northern Hottest Spot

Most significant northern sky pixel:

R.A.	dec	Pre-trial p _{val}	Post-trial p _{val}	
309.64°	-0.75°	2.9 × 10 ⁻⁵	0.98	

High-Purity Analysis: Southern Hottest Spot

Most significant southern sky pixel:

R.A.	dec	Pre-trial p_{val}	Post-trial p _{val}	
89.21°	-35.87°	1.1 × 10 ^{−5}	0.90	

High-Purity Analysis: Population Test

No significant excess:

Hemisphere	Pre-trial P _{Poiss}	Post-trial P _{Poiss}	
North	0.13	0.85	
South	6.0 × 10 ^{−3}	0.22	

Constraints on Northern Sky Population

Population test in high-purity analysis is used to constrain the luminosity and density of a population of transient sources in northern hemisphere, assuming:

- Isotropic distribution
- Single flares
- Energy dependence $dN/dE \propto E^{-2.28}$
- Time-scale of 1 or 100 days
- Source evolution: <u>Madau & Dickinson (2014)</u>

Simulations of flare intensity and source declinations are made with <u>FIRESONG</u>

Conclusions

- No significant transients are observed
- Constraints are set on transient population in northern sky
- Neutrino lightcurves are produced from all directions in the sky

Analysis	Search	Hemisphere	Pre-trial p-value	Post-trial p-value
	Hottest spot	North	9.2×10^{-6}	0.69
Ligh stat multi flora	Hottest spot	South	3.5×10^{-7}	0.06
nigh-stat multi-mare	Population test	North	0.98	0.98
	ropulation test	South	0.12	0.12
	Hottest anot	North	2.9×10^{-5}	0.98
High purity multi flore	Hottest spot	South	1.1×10^{-5}	0.90
mgn-punty multi-mate	Population test	North	0.13	0.85
	ropulation test	South	6.0×10^{-3}	0.22

Summary of results

We wish to acknowledge the National Science Foundation and the Fonds National Suisse for their support in this and other IceCube analyses

National Science Foundation WHERE DISCOVERIES BEGIN

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation BACKUP

High-Purity Analysis: Hottest Spot's Flare Parameters

Northern Hottest Spot

R.A.	dec	n _s	Y	t ₀ [MJD]	$\sigma_{_{ m T}}$ [days]	Pre-trial p _{val}	Post-trial p _{val}
309.64°	-0.75°	21.7	3.0	57615	39	2.9 × 10 ⁻⁵	0.98

Southern Hottest Spot

R.A.	dec	n _s	Y	t ₀ [MJD]	$\sigma_{_{ m T}}$ [days]	Pre-trial p _{val}	Post-trial p _{val}
89.21°	-35.87°	6.5	2.8	56808.6	4.2	1.1 × 10 ^{−5}	0.90

Both hottest spots are single-flare

Local Hot Spots

High-Purity Analysis: Post-Trial p-value Population Test

