Constraining the origin of UHECRs and astrophysical neutrinos

Marco Muzio (NYU) Glennys Farrar (NYU), Michael Unger (KIT)

Karlsruher Institut für Technologie

Could astrophysical neutrinos have common origin with UHECRs?

CR Source Model

- Unger-Farrar-Anchordoqui model (UFA, 2015 PRD):
 - 1. Inject CRs into source environment

2. CRs processed by photon interactions

- 3. CRs escape source environment
- 4. CRs propagate to Earth
- Accounts for observed spectrum (>10^{17.5} eV) & composition (>10^{17.8} eV)

Elaborations to UFA

- Addition of gas in source environment (single zone) — hadronic interactions
 - Calculated interaction matrices with CRMC using Sibyll2.3c and EPOS-LHC
- **Realistic rigidity-dependent escape** time, allowing for transition between diffusive, Bohm, & quasi-ballistic propagation regimes and reflecting finite source size

- Ratio of photon-togas interactions (10 EeV ⁵⁶Fe)
- $\overline{\langle N_{\mathrm{int}}^p \rangle}$

 Preferred astrophysical properties constrained by model parameters

Both gas- and photon-dominated sources can give good fits to CR data

Marco Muzio (NYU)

CRs: Slight preference for photon-dominated sources

Marco Muzio (NYU)

Average number of interactions (10 EeV ⁵⁶Fe)

4.0
3.5
3.0
2.5
2.0 >
1.5
1.0
0.5
0.0

Marco Muzio (NYU)

$N_{\sigma} > 2.58$ UHECR Constraint

Marco Muzio (NYU)

$N_{\sigma} > 2.58$ UHECR Constraint

$2.0^{20} N_{\nu}^{\text{EHE}} > 4.74 \text{ EHE } v \text{Constraint}$

11

Marco Muzio (NYU)

$N_{\sigma} > 2.58$ UHECR Constraint

$N_{\nu}^{\rm EHE} > 4.74$ EHE ν Constraint

— γ -ray flux > EGB + 1 σ (always weaker than v-bound)

12

$N_{\sigma} > 2.58$ UHECR Constraint

Gas-dominated sources in tension with EHE neutrino constraints

γ -ray flux > EGB + 1 σ (always weaker than v-bound)

Spectral Index of UHECR Accelerator

0.0 Photon 10^{4} -0.5 10^{-10} -1.0 -1.5 $\langle M_{ini}^{tui} N \rangle / \langle M_{ini}^{tui} N \rangle$ 10¹ -2.5-3.0 10^{0} -3.5**Seg** 10⁻¹ -4.0 10^{2} 10³ 10^{1} 10^{4} $\langle N_{int} \rangle$ $J \sim E^{\gamma_{\mathrm{inj}}}$

Marco Muzio (NYU)

- -2.0

14

Spectral Index of UHECR Accelerator

0.0 Photon -0.5-1.0-1.5 $\langle n_{ini}^{tui} \rangle \rangle \langle n_{ini}^{tui} \rangle$ 10¹ -2.0-2.5-3.0 10^{0} -3.5 **Sec** 10⁻¹ -4.0 10^{3} 10^{2} 10^{4} 101 $\langle N_{int} \rangle$

 $J \sim E^{\gamma_{\rm inj}}$

Marco Muzio (NYU)

Spectral indices ~E⁻² compatible with UHECRS in tension with EHE neutrinos

Accurate measurement of neutrino flux in ~10 PeV energy range could exclude E⁻²

Spectral Index of UHECR Accelerator

0.0 Photon -0.5-1.0 $\langle M_{ini}^{tui} N \rangle / \langle M_{ini}^{tui} \rangle$ 10¹ -3.0 10^{0} -3.5**So** 10⁻¹ -4.0 10^{2} 103 10^{4} 10¹ $\langle N_{int} \rangle$ $J \sim E^{\gamma_{\rm inj}}$

Marco Muzio (NYU)

Spectral indices ~E⁻² compatible with UHECRS in tension with EHE What about the astrophysical inos neutrino flux description?

Accurate measurement of neutrino flux in ~10 PeV energy range could exclude E⁻²

Marco Muzio (NYU)

χ^2_{ν}/ndf to astrophysical neutrinos

*only non-UHECR component fit

10¹

 10^{2} $\langle N_{int} \rangle$

 10^{3}

17

 10^{4}

Best description of astrophysical neutrino flux corresponds to best-fit UHECR region!

 10^{4}

 10^{3}

 10^{-1}

 10^{0}

Marco Muzio (NYU)

• • • • • • • • •

10¹

 10^{2} $\langle N_{int} \rangle$

<u>999</u>

 10^{3}

 10^{4}

Narrowing in on Possible Sources

Performed MCMC to find spread of parameter values compatible with data and constraints

Posterior distribution modes and 16th/84th percentiles indicated

Marco Muzio (NYU)

Work in Progress: the Not-Hillas Plot

Posterior distribution constrains source size L and magnetic field strength B

Source regions indicated represent fiducial values from literature, plot still being populated

What known astrophysical sources lie in the favored region?

Summary

- Gas & photon interactions in source environment can explain UHECR data
- Gas dominated source environments in tension with EHE neutrinos
- Viability of soft spectral indices like ~E⁻² determined by accurate measurement of **neutrino flux at ~10 PeV**
- High energy astrophysical neutrinos can be explained by UHECR sources
- Analysis constrains astrophysical **source properties**, potentially determines preferred source types

Marco Muzio (NYU)

