Executive Summary for *Trinity* Sensitivity Findings

Andrew Wang^{*a}, Michele Doro^b, Eliza Gazda^a, Chaoxian Lin^a, Nepomuk Otte^a, Ignacio Taboada^a, Anthony M. Brown^c, and Mahdi Bagheri^a

^aGeorgia Institute of Technology, School of Physics & Center for Relativistic Astrophysics,, 837 State Street NW, Atlanta, Georgia 30332-0430, USA

^b Università di Padova (UniPD), Dipartimento di Fisica e Astronomia (DFA) G. Galilei , I-35131 Padova, Italy ^c Centre for Advanced Instrumentation, Durham University, South Road, Durham, DH1 3LE, UK

1 Overview

In this proceeding, we present updated diffuse-flux and point-source sensitivity calculations for the proposed ultra-high energy (UHE, > 10 PeV) neutrino observatory, *Trinity*.

2 Significance

Trinity's ability to detect UHE neutrinos will help shed light onto the unknown origin of IceCube's astrophysical neutrinos and help answer other pressing questions in astroparticle physics.

3 Methods

We simulate ten years of observation for diffuse-flux sensitivities, and observe five selected sources over periods ranging from one hour to one year for point-source sensitivities.

4 Findings

We find that *Trinity* is capable of overlapping and extending IceCube-measured diffuse neutrino flux into higher energies, and is able to detect transient source fluxes as low as $10^{-14} \text{ cm}^{-2} \text{s}^{-1}$ within one year.

*Presenter