

Marek Siłuszyk (University Siedlce & Military University of Aviation) Krzysztof Iskra (Military University of Aviation) Witold Woznak (Polish Gas Company) Michal Borkowski Military University of Aviation) **Tomasz Zienkiewicz** (Military University of Aviation)

Abstract:

The calculation of asymptotic directions of approach of cosmic ray particles is an important tool in the determination of the rigidity cutoff for a given geographical site. We present the results of computations of the asymptotic latitude and asymptotic longitude and the magnetic rigidity cutoff for the airports (Apatity, Oulu, Warsaw, Lae, Buenos Aires, Wellington and Mc Murdo) located at different latitudes and longitudes based on the numerical integration of equations of motion of charged particles of cosmic radiation in the Earth's magnetic field. The initial distance from the center of the Earth was taken as 20 km above the surface. At about this altitude, most cosmic rays undergo nuclear collisions. Calculations were made for the model of the International Geomagnetic Reference Field (IGRF) in 2015.

Introduction

The equation of motion of the particle in the Gaussian system of units is:

$$m\frac{d^{2}\vec{r}}{dt^{2}} = \frac{e}{c}(\vec{v}\times\vec{B})$$

this may be written in terms of the spherical coordinate system as follows
$$\begin{cases} \frac{dv_{r}}{dt} = \frac{e}{mc}(v_{\theta}B_{\varphi} - v_{\varphi}B_{\theta}) + \frac{v_{\theta}^{2}}{r} + \frac{v_{\varphi}^{2}}{r} \\ \frac{dv_{\theta}}{dt} = \frac{e}{mc}(v_{\varphi}B_{r} - v_{r}B_{\varphi}) - \frac{v_{r}v_{\varphi}}{r} + \frac{v_{\varphi}^{2}}{r} \end{cases}$$

$$\frac{dv_{\theta}}{dt} = \frac{e}{mc} \left(v_{\varphi} B_r - v_r B_{\varphi} \right) - \frac{v_r v_{\varphi}}{r} + \frac{v_{\overline{\varphi}}}{r \, tg \, \theta}$$
$$\frac{dv_{\varphi}}{dt} = \frac{e}{mc} \left(v_r B_{\theta} - v_{\theta} B_r \right) - \frac{v_r v_{\varphi}}{r} - \frac{v_{\varphi} v_{\theta}}{r \, tg \, \theta}$$
$$v_r = \frac{dr}{dt}$$
$$v_{\theta} = r \frac{d\theta}{dt}$$
$$v_{\varphi} = r \sin \theta \frac{d\varphi}{dt}$$

$$B_{\theta} = -\frac{1}{r}\frac{dU}{d\theta} = -\frac{1}{r}\frac{dU}{d\theta} = -\frac{1}{r\sin\theta}\frac{dU}{d\varphi} = -\frac{1}{dU}\frac{dU}{d\psi} = -\frac{1}{r}\frac{dU}{d\psi} = -\frac{1}{r}\frac{dU}$$

 $B_{m} = --- >$

Experimental Results And Discussion

Table 1. Localization parameters of selected eight airports

	<u> </u>	<u>v</u>	<u>+</u>	
		Geographic latitude	Geographic	Height
No	Airport	[degrees]	longitude[degrees]	[m]
1	Oulu	64,91	25,37	14
2	Apatity	67,45	33,58	160
3	Warsaw	52,15	20,96	110
5	Lae	8,92	166,25	1
6	Buenos Aires	-34,82	-58,53	20
7	Wellington	-41,32	174,8	13
8	Mc Murdo	-71,85	166,47	10

					<u>+</u> .									
	Inclined c	omponents				Inclined	components				Inclined co	omponents		
Apatity	R _{st} [GV]	R _{ef} [GV]	R _m [GV]	Width of penumbral zone in GV	Oulu	R _{st} [GV]	R _{ef} [GV]	R _m [GV]	Width of penumbral zone in GV	Warsaw	R _{st} [GV]	R _{ef} [GV]	R _m [GV]	Width of penumbral zone in GV
Azimuth angle		Zenith angle	16		Azimuth angle		Zenith angle	16		Azimuth angle		Zenith angle	16	
65	0,53	0,54	0,57	0,04	65	0,74	0,77	0,83	0,09	71	2,65	2,96	3,23	0,58
155	0,53	0,54	0,56	0,03	155	0,74	0,75	0,82	0,08	161	2,65	2,92	3,09	0,44
245	0,52	0,53	0,56	0,04	245	0.73	0.74	0.8	0.07	251	2.51	2.72	2.99	0.48
355	0,51	0,52	0,54	0,03	355	0,74	0,75	0,81	0,07	341	2,58	2,82	3,15	0,57
Azimuth		Zenith	32		Azimuth angle		Zenith angle	32		Azimuth angle		Zenith angle	32	
65	0.53	0.54	0.56	0.03	65	0,75	0,77	0,8	0,05	65	2,75	3,14	3,52	0,77
155	0.53	0.54	0.56	0.03	155	0,75	0,77	0,8	0,05	155	2,64	2,97	3,23	0,59
245	0,52	0,53	0,57	0,05	245	0,72	0,73	0,79	0,07	245	2,36	2,63	2,91	0,55
355	0,52	0,53	0,57	0,05	355	0,73	0,74	0,8	0,07	355	2,57	2.78	3,12	0,55
			•	·1				· ·	L		_,	_,	_,	- ,

(5)

Table 2. Cut-off rigidities and the width of the penumbra zone for vertical components for seven airports

No	Airports	Vertcal penumbral zone				
		Rst [GV]	Ref [GV]	Rm [GV]	Width of penumbral zone in GV	
1	Apatity	0,53	0,54	0,58	0,05	
2	Oulu	0,74	0,75	0,81	0,07	
3	Warsaw	2,61	2,85	3,13	0,52	
5	Lae	15,34	15,34	15,35	0,01	
6	Buenos Aires	7,54	8,17	8,84	1,3	
7	Wellington	2,91	3,27	3,41	0,5	
8	Mc Murdo	0,09	0,1	0,12	0,03	

	Inclined co	mponents		
Lae	R _{st} [GV]	R _{ef} [GV]	R _m [GV]	Width of penumbral zone in GV
Azimuth angle		Zenith angle	16	
99	17,84	17,84	17,85	0,01
189	15,52	15,52	15,53	0,01
279	13,59	13,59	13,6	0,01
369	15,68	15,68	15,69	0,01
Azimuth angle		Zenith angle	32	
99	21,42	21,42	21,43	0,01
189	16,22	16,22	16,23	0,01
279	12,38	12,38	12,39	0,01
369	16,57	16,57	16,58	0,01

The asymptotic directions of approach and the magnetic rigidity cutoff of cosmic ray particles calculated for different airports.

$$\begin{cases} \frac{dt_r}{ds} = \frac{e}{vmc} \left(t_\theta B_\varphi - t_\varphi B_\theta \right) + \frac{t_\theta^2}{r} + \frac{t_\varphi^2}{r} \\ \frac{dt_\theta}{ds} = \frac{e}{vmc} \left(t_\varphi B_r - t_r B_\varphi \right) - \frac{t_r t_\theta}{r} + \frac{t_\varphi^2}{r tg \theta} \\ \frac{dt_\varphi}{ds} = \frac{e}{vmc} \left(t_r B_\theta - t_\theta B_r \right) - \frac{t_r t_\varphi}{r} - \frac{t_\varphi t_\theta}{r tg \theta} \end{cases}$$

 $U = r_z \sum_{n=1}^{\infty} \left(\frac{r_z}{r}\right)^{n+1} \sum_{m=0}^{n} (g_n^m \cos m \,\varphi + h_n^m \sin m \,\varphi) P_n^m(\cos \theta)$

$$\sum_{n=1}^{\infty} \left(\frac{r_z}{r}\right)^{n+2} \sum_{m=0}^{n} \left(g_n^m \cos m\varphi + h_n^m \sin m\varphi\right) \frac{dP_n^m(\cos\theta)}{d\omega} - \sum_{n=1}^{\infty} \left(\frac{r_z}{r}\right)^{n+2} \sum_{m=0}^{n} \left(mg_n^m \sin m\varphi + mh_n^m \cos m\varphi\right) \frac{P_n^m(\cos\theta)}{\sin\theta} \left(g_n^m \cos m\varphi + h_n^m \sin m\varphi\right) P_n^m(\cos\theta)$$

	Inclined o	components		
Buenos Aires	R _{st} [GV]	R _{ef} [GV]	R _m [GV]	Width of penumbral zone in GV
Azimuth angle		Zenith angle	16	
87	8,87	9,41	10,21	1,34
177	7,56	7,77	8,56	1
267	6,98	7,36	7,94	0,96
357	7,58	8,61	9	1,42
Azimuth angle		Zenith angle	32	
87	10,78	11,35	12,07	1,29
177	7,69	8,1	8,69	1
267	6,42	6,77	7,33	0,91
357	9,16	9,21	9,32	0,16

	Inclined co	omponents		
Mc Murdo	R _{st} [GV]	R _{ef} [GV]	R _m [GV]	Width of penumbral zone in GV
Azimuth angle		Zenith angle	16	
147	0,04	0,04	0,05	0,01
237	0,04	0,04	0,05	0,01
327	0,04	0,04	0,05	0,01
417	0,04	0,04	0,05	0,01
Azimuth angle		Zenith angle	32	
147	0,04	0,04	0,05	0,01
237	0,04	0,04	0,05	0,01
327	0,04	0,04	0,05	0,01
417	0,04	0,04	0,05	0,01

	Inclined c			
Wellington	R _{st} [GV]	R _{ef} [GV]	R _m [GV]	Width of penumbral zone in GV
Azimuth angle		Zenith angle	16	
104	3,03	3,39	3,58	0,55
194	2,92	3,31	3,48	0,56
284	2,7	3,13	3,28	0,58
374	2,9	3,31	3,42	0,52
Azimuth angle		Zenith angle	32	
104	3,07	3,54	3,78	0,71
194	3	3,4	3,57	0,57
284	2,94	3,07	3,23	0,29
374	3,11	3,41	3,46	0,35

Figure 2. Dependence of the cutoff rigidity on azimuth for particles ertical for airport in Warsaw (the solid line represents the azimuth for the zenith angle 16, the dashed line for the zenit

Conclusions

- Buenos Aires, Wellington and Mc Murdo.
- poles than the equator
- is expressed by R_{ef} (Warsaw, Buenos Aires, Wellington)
- penumbra or by R_{ef} if penumbra exists.
- expressed by R_m
- asymmetry.
- different classes of the cosmic rays variations intensity and anisotropy

Figure 3. Shows the same as Fig 2 for airport Wellington (souther

Id:1266

1. Asymptotic directions (asymptotic latitude and longitude) of the arrival of charged particles and magnetic cutoff rigidity were determined for the airports: Apatity, Oulu, Warsaw, Lae,

2. The magnetic cut-off rigidity depends on the latitude. With the increase of latitude, the magnetic stiffness decreases, i.e. cosmic ray particles reach the Earth more easily from the

3. For the airports located at medium latitude, we observe a penumbra zone, that contains a family of allowed and forbidden trajectories of cosmic ray particles and magnetic cutoff rigidity

4. For the airports located at high latitude, (Apatity, Mc Murdo and Oulu) the penumbra does not exist or is very narrow and magnetic cut-off rigidity is expressed by R_{st} in the absence of

5. In low latitudes (Lae airport), the penumbra does not appear and magnetic cutoff rigidity is

6. Analysis of the magnetic cut-off rigidity for the inclined components, we observe east-west

7. Knowledge of asymptotic directions and the magnetic cutoff rigidity, it is important from the point of view of the flight safety of both passenger and military aircraft and study of the