

FACULTY OF SCIENCE Department of Astronomy

Introduction

Blazars are a subclass of radio-loud active galactic nuclei (AGNs), where the jet is aligned close to the line of sight. Emission of blazars is dominated by the jet in a wide range of wavelenghts from radio to very high energy gamma-rays. Blazars are also characterized by a rapid variability, the origin of which is not yet clear. Changes of the viewing angle of the emitting region in a twisted or wobbling jet has been proposed as one of the mechanisms that could explain the variability of blazars [1]. Detailed simulations of a tilted disc-jet systems show disc-jet wobbling by several degrees in amplitude on relatively short timescales of about 10^3 - 10^4 t_g [2]. Such variations of the jet viewing-angle could boost jet emission in and out of the line-ofsight, resulting in observations of high-energy flares on a timescale of the wobbling [2].

The goal is to constrain a typical intervals between the flares for selected bright blazars and compare them with the expected wobbling timescales dependent on the supermassive black hole (SMBH) mass.

Detection of flares

We selected 4 bright blazars from the Fermi 4LAC catalog [3], with well covered Swift-XRT light curves and reliably determined mass: Mrk 421, Mrk 501, IES 1959+650 and 3C 273. To detect individual flares, we first iteratively applied second order Savitzky-Golay filter [4] in order to subtract the long term variations in the light curves. The flare candidates (shown in Fig. I) were then identified in the detrended data using 95% percentile cut on the count rate distribution.

Figure I: Flares (marked by green lines) detected in a part of the Swift-XRT light curve of Mrk 421. The blue line shows the long term variability, and the red points are the suspected flares detected by our algorithm.

Observational constraints on the blazar jet wobbling timescales

Jakub Juryšek, Vitalii Sliusar, Dimitri Moulin & Roland Walter Department of Astronomy, University of Geneva

Time intervals between flares

The distributions of time intervals between the flares in the observer's frame Δt are shown in Figure 2. In order to constrain a possible range of the jet wobbling timescale, we assumed that Δt can be approximated by Weibull distribution, with suitable property of Δt being always greater than 0. For each distribution, we also performed Kolmogorov-Smirnov test to verify that the zero hypothesis (both distributions are the same) cannot be rejected. Pvalues of the KS-test was > 0.85 for all four sources. We also assumed that the secondary peaks in the Δ t distribution are due to missing flares that were too weak to be detected by our algorithm, or fell in the periods not covered by the Swift-XRT observations in-between the flares detected. If that is the case, the longer time intervals would split in half and contribute to the first peak.

Figure 2: Distributions of Δt , where the first peaks are approximated by the Weibull distribution (black lines). For 3C 273, the only FSRQ in our sample, Δt between X-ray flares is compared with radio observations of superluminal knots ejection times, observed by VLBA at 43 GHz [5-7].

References

- I. Raiteri et al., Blazar spectral variability as explained by a twisted inhomogeneous jet, Nature **552** (2017) 374-377.
- 2. Liska et al., Formation of precessing jets by tilted black hole discs in 3D GR MHD sim., MNRAS 474 (2018) L81-L85.
- 3. Ajello et al., The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Tel., ApJ 892 (2020) 105.
- 5. Larionov et al., Multiwavelength behaviour of the blazar 3C 279: decade-long study from gamma-ray to radio, MNRAS **492** (2020) 3829-3848.
- Savolainen et al., Multifrequency VLBA monitoring of 3C 273 during the INTEGRAL Campaign in 2003. I. Kinematics of the parsec scale jet from 43 GHz data, A&A 446 (2006) 71-85.
- 7. Jorstad et al., Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program, A&A **846** (2017) 98.

4. Savitzky & Golay, Smoothing and Differentiation of Data by Simplified Least Squares Proc., Anal.Chem. 36 (1964) 1627.

The time intervals between flares in the units of t_g transformed in the source frame can be expressed as

where δ is the Doppler beaming and z is the redshift. While z for the bright blazars in our sample are determined with high precision, uncertainties of the other parameters cannot be neglected.

Figure 3: Distribution (blue line) of estimated $\Delta \tau / t_g$ for individual sources. Filled regions represent 95% confidence intervals. The fuzzy grey regions show the expected range of jet wobbling timescale according to [2].

Observational constrains on $\Delta \tau/t_g$ are rather weak, mostly due to the uncertainties of δ . The jet wobbling timescale falls in the 95% confidence interval of $\Delta \tau/t_g$ for Mrk 421, Mrk 501 and 3C 273. For TES 1959+650, the timescale of blazar flares constrained by observations tends to be higher. A detailed analysis of a power spectrum of the tilt angle variations simulated on a longer interval would be necessary for exact determination of the jet wobbling timescale.

Comparison of timescales

$$\frac{\Delta \tau}{t_{g}} = k \frac{\delta \Delta t}{(1+z)M_{\text{SMBH}}}, \ k = 8.7 \times 10^9 \ M_{\odot} \text{day}^{-1}, \tag{1}$$

We carefully evaluated possible ranges of δ and M_{SMBH}, determined by various methods, collected from different studies and observations. In Figure 3, there are distributions of $\Delta \tau/t_g$ for individual sources, obtained by Monte Carlo sampling of the Eq. I within the observed ranges of δ and M_{SMBH} and compared with the expected jet wobbling timescales.

Conclusions

jakub.jurysek@unige.ch