
1,76 mm

-92,10 °

2,54 mm

179,63 °

2,54 mm

4,67 °

Photon decay in UHE air showers:
a stringent bound on Lorentz violation

Fabian Duenkel∗, Marcus Niechciol, Markus Risse
University of Siegen, Walter-Flex-Str. 3, Siegen, Germany

∗ E-mail: duenkel@hep.physik.uni-siegen.de

Take-Home Message

• With isotropic, nonbirefringent Lorentz violation (LV) in the photon sector the decay of UHE
photons is possible, leading to significant changes of the shower development.

• Observations of the average depth of the shower maximum 〈Xmax〉 have been used to place a
stringent bound on LV.

• The inclusion of observations of the shower-to-shower fluctuations σ(Xmax) can be used to
place a stricter bound of κ > −6 × 10−21 (98% CL) improving the previous bound by a
factor 50. This is the most stringent bound on this type of LV.

Background and previous bounds

• A more fundamental theory beyond the Standard model of Elementary Particle Physics (SM)
is needed (to explain e.g. dark matter and dark energy, include gravity).

• In many approaches, deviation from exact Lorentz symmetry is possible.

• Lorentz violation (LV) in the photon sector can be achieved by adding a single term which
breaks Lorentz invariance but preserves CPT and gauge invariance to the Lagrange density [1]:
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• For isotropic, nonbirefringent LV in the photon sector kF is controlled by a single parameter
κ:

(kF )
λ
µλν =

κ

2
[diag(3, 1, 1, 1)]µν .

• In the case of κ 6= 0, processes which are forbidden in the SM become possible.

• Here, we focus on negative values of κ:

I Photons decay into electron-positron pairs very efficiently above the energy threshold
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,

• If photons with energies above this threshold occur in air showers induced by UHE cosmic rays,
a decrease of the depth of the shower maximum 〈Xmax〉 can be observed.

• In addition, changes in the decay time of pions are expected.

• Previous bounds were set using observations of gamma rays [2] (κ > −9× 10−16 (98% CL))
and comparisons of the depth of the shower maximum 〈Xmax〉 [3] (κ > −3×10−19 (98% CL)).
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Analysis

• The impact of LV on the development of air showers is analyzed using simulations done with
a modified version of the MC code CONEX [4, 5].

I We implemented photon decay as well as a modification of the decay time of the neutral
pion.

• The average depth of the shower maximum 〈Xmax〉 decreases with larger values of κ, while
the shower-to-shower fluctuations σ(Xmax) remain largely unaffected.

• We extend the approach from the previous bound using only 〈Xmax〉-observations by also
including σ(Xmax).

• The exact composition of cosmic ray particles is unknown.

I Especially at high energies, there are significant differences between the values of σ(Xmax)
for the most conservative pure proton composition and measurements of σ(Xmax).

I Possible compositions are simulated by combinations of protons, helium nuclei (A = 4),
oxygen nuclei (A = 16) and iron nuclei (A = 56).

I Use combination of 〈Xmax〉 and σ(Xmax) to constrain possible compositions.

I For a specific value of κ all possible compositions lead to a umbrella-shaped region.

• To establish possible 〈Xmax〉/σ(Xmax)-combinations
use Auger measurements [6] to set a 2-D
confidence interval at 98 %, assuming gaus-
sian distributions for statistical uncertainties
and uniform distributions for systematic un-
certainties.

• If no overlap between simulated combina-
tions of 〈Xmax〉/σ(Xmax) and data taken
from the Auger observatory [6] is found, the
corresponding value of κ can be excluded.

• This process is repeated until κcrit is found,
for which every κ ≤ κcrit can be excluded
while any κ > κcrit cannot.

Results

• The new bound gained through this method is κ > −6×10−21 (98% CL), which improves
the previous bound by a factor of 50.

• The compositions used to set this new bound
consist of almost only Helium nuclei.

I Since UHE cosmic rays are unlikely
to be only Helium nuclei, further re-
strictions on compositions are ex-
pected to further improve this limit.

• Improvements of this bound are also ex-
pected with a reduction of statistical un-
certainties.

• The three hadronic interaction models
EPOS LHC [7], QGSJET-II-04 [8] as well
as SIBYLL 2.3d [9] were used, although
only SIBYLL 2.3d is shown here, since it
produces the most conservative results.

• The important value for determining the bound obtained in this paper is the Auger data
in the energy range from 1019.1 eV to 1019.2 eV with a mean energy of 1019.15 eV,
primarily due to the combination of the low σ(Xmax) value at this energy paired with the
comparatively small statistical uncertainty of σ(Xmax).

I Excluding this energy from the analysis would result in a slightly weaker bound of
κ > −8 × 10−21 (98% CL) from three different energy ranges, making the result
quite stable against the choice of the energy bin.

• A minor portion of the improvement is due to the increase in statistics between Auger
measurements used for previous bounds [10] and those used here [6].
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