THE RADIO NEUTRINO OBSERVATORY IN GREENLAND (RNO-G)

Stephanie Wissel, Penn State 21 July 2021 ICRC Theater of Dreams Highlight

THE OHIO STATE UNIVERSITY

SCIENCE WITH NEUTRINOS AT ULTRA-HIGH ENERGIES (UHE > 10 PeV)

➤ UHE v's probe fundamental physics in a new energy regime and the longest length scales

THE DIFFUSE NEUTRINO FLUX AT UHE ENERGIES

➤ Flux is low and falls with energy as E⁻² (at best)

> See K. Hoffman talk PoS(014) from earlier today for excellent introduction to the field and ARA

See S. Barwick for ARIANNA PoS(1190)

Scale up from current arrays

- ➤ Hybrid design combines advantages of ARA (deep) & ARIANNA (shallow)
 - ➤ Large effective volume
 - Cosmic ray veto
- ➤ Highly scalable

Projected limits assume 5 year livetime, trigger level sensitivities, 95% FC UL

RNO-G Whitepaper arXiv:2010.12279

See I. Plaiser PoS(1026), C. Welling PoS(1033), and D. Smith PoS(1058) for more on RNO-G

RNO-G AS A MIDSCALE DETECTOR

➤ Informs design for the hybrid stations of Gen2-radio

> See S. Hallman PoS(1185) & M. Kowalski PoS(022) for more on Gen2-radio

Projected limits assume trigger level sensitivities, 90% FC UL and 10 year livetime unless otherwise stated 5

RNO-G

- ➤ 35 stations, 1.25 km spacing
- Summit Station, Greenland
- ➤ First deployment season happening **now**
- ➤ Expect 3 complete stations by end of season
- ➤ Deployment ends Summer 2024

RNO-G Planned Layout

> At UHE energies, primarily sensitive to down-going or Earth-skimming neutrinos

- Sensitive to nearby and/or bright transient events
- > Multi-messenger follow-up enabled with continuous satellite coverage, beam-forming

RNO-G STATION CONCEPT

Deep component:

Effective Volume

Low Threshold (2σ) trigger with compact phased array

Outrigger antennas enable reconstruction

Shallow component:

Cosmic rays

Veto

Additional channels for reconstruction

Independent trigger

First Station: Amaroq (Arctic Wolf)

➤ BAS BigRAID Drill

Custom auger drill developed for RNO-G by the British Antarctic Survey

- ➤ 11-inch diameter holes
- ➤ Capable of drilling 1 hole to 100 m in 1 shift (2 people)
 - ➤ Most holes drilled this season are 2 shifts / hole

Shallow antennas Warm deployment sled movable deployed in trenches by snowmobile ...or people! Shallow: LPDAs

Deep channels lowered by hand

See I. Plaiser PoS(1026), C. Welling PoS(1026) for more on event reconstruction

FIRST DEEP EVENTS

Snowmobile lights up the deep channels

Deep Vpol Channels

Low power envelope trigger

- ➤ Shallow component vetoes both kinds
 - ➤ Cosmic ray air showers
 - > Penetrating muons from cosmic ray air showers
 - \succ Would otherwise be $\mathcal{O}(0.1-1)$ per year for the array, comparable to possible neutrino event rates

- >RNO-G is the first science-level instrument to target the UHE cosmic neutrino sky in the North
 - >New hybrid design combines deep component for high effective volume from deep, low threshold trigger with shallow component for redundancy & vetos
 - > Designed for scalability large scale deployment, low power
 - >Planned 35 stations are currently under construction
 - >First stations are taking data...

