Cosmic-ray acceleration and gamma-ray emission from protostellar jets

Anabella Araudo^{1,2,3}, Marco Padovani⁴, Alexandre Marcowith¹

(1) Laboratoire Universe et Particules de Montpellier - LUPM

(2) ELi Beamlines, Institute of Physics, Czech Academy of Sciences

(3) Astronomical Institute, Czech Academy of Sciences

(4) Arcetri Astrophysical Observatory

- 1. Introduction
- 2. Magnetic field amplification by Bell instabilities
- 3. Maximum energies and gamma-ray emission
- 4. Conclusions

Introduction

Star forming regions

Protostellar jets

- Well known thermal emitters
- Increasing population of **non-thermal protostellar jets** (e.g. Purser et al. 2016)
- + Jet velocities $v_{\rm j} \sim 300-1000~{\rm km~s^{-1}}$

Credit: NASA, ESA, M. Livio and the Hubble 20th Anniversary Team

Synchrotron emission from protostellar jets

Garay et al. (2003)

Rodríguez et al. (2005)

Magnetic fields and non-thermal particles content

$$\frac{U_{e}}{erg \, cm^{-3}} \sim 5 \times 10^{-8} \left(\frac{d}{\rm kpc}\right)^{2} \left(\frac{S_{\nu}}{\rm mJy}\right) \left(\frac{R_{j}}{10^{16} \rm cm}\right)^{-3} \left(\frac{\nu}{\rm GHz}\right)^{\frac{5-1}{2}} \left(\frac{B_{s}}{\rm mG}\right)^{-\frac{5+1}{2}}$$

5

Magnetic field amplification by Bell instabilities

Jet termination region

- Electrons $(U_e(\epsilon_{\nu}, B_s))$ and protons $(U_p = aU_e)$ are accelerated in the jet reverse shock
- Equipartition magnetic field: $B_{eq}^2/8\pi = (1+a)U_e$
- Acceleration efficiency: $\eta_p = U_p/U_{\rm kin} \propto U_p/(n_{\rm j}v_{\rm j}^2)$

 \mathbf{c}

$$\frac{n_{\rm j}}{{\rm m}^{-3}} \approx 150 \left(\frac{\dot{M}_{\rm i}}{10^{-6}\,{\rm M}_{\odot}\,{\rm yr}^{-1}}\right) \left(\frac{V_{\rm j}}{1000\,\,{\rm km\,s}^{-1}}\right)^{-1} \left(\frac{R_{\rm j}}{10^{16}\,{\rm cm}}\right)^{-2}$$

Bell instabilities in YSO jets

Condition for growing NR modes: $\zeta M_{\rm A}^2 > 1$

$$\zeta M_{\rm A}^2 \simeq 10^4 \left(\frac{\eta_{\rm P}}{0.01}\right) \left(\frac{n_i}{10^3 {\rm cm}^{-3}}\right) \left(\frac{B_{\rm j}}{\mu {\rm G}}\right)^{-2} \left(\frac{v_{\rm sh}}{1000 \, {\rm km \, s}^{-1}}\right)^{\frac{3}{2}}$$

Maximum growth rate:

Magnetic field amplification in YSOs

Maximum energies and gamma-ray emission

Protons maximum energy - $E_{p,\max}$

- $E_{p,\max}$ due to the escape of particles upstream of the shock $\Gamma_{\max,NR}(R_j/v_{sh}) > 5$ (Zirakashvili & Ptuskin 2008, Bell et al. 2013)
- For a distribution of protons $N_p \propto E_p^{-s}$

$$\frac{E_{p,\max}}{m_{p}c^{2}} = \begin{cases} 70(2-s)\left(\frac{U_{p,tot}}{10^{-5}\mathrm{erg\,cm^{-3}}}\right)\left(\frac{R_{j}}{10^{16}\mathrm{cm}}\right)\left(\frac{n_{i}}{10^{4}\,\mathrm{cm^{-3}}}\right)^{-\frac{1}{2}} & s<2\\ 70\log\left(\frac{E_{p,\max}}{\mathrm{GeV}}\right)^{-1}\left(\frac{U_{p,tot}}{10^{-5}\mathrm{erg\,cm^{-3}}}\right)\left(\frac{R_{j}}{10^{16}\mathrm{cm}}\right)\left(\frac{n_{i}}{10^{4}\,\mathrm{cm^{-3}}}\right)^{-\frac{1}{2}} & s=2\\ \left[70(s-2)\frac{1}{m_{c}c^{2}}\left(\frac{U_{p,tot}}{10^{-5}\mathrm{erg\,cm^{-3}}}\right)\left(\frac{R_{j}}{10^{16}\mathrm{cm}}\right)\left(\frac{n_{i}}{10^{4}\,\mathrm{cm^{-3}}}\right)^{-\frac{1}{2}}\right]^{\frac{1}{s-1}} & s>2 \end{cases}$$

We find $E_{p,\max} \sim 0.1$ TeV for all the sources in our sample

Gamma-ray emission

GeV-TeV protons (electrons) produce gamma-rays by proton-proton collisions (relativistic Bremsstrahlung) (Araudo et al. 2007, Bosch-Ramon et al. 2010)

Gamma-ray emission

Density enhancement in the jet termination region

Rayleigh-Taylor mixing will increase the matter density in the emitter

$$\frac{n'_{\rm max}}{n_{\rm mc}} \sim 1000 \left(\frac{n_{\rm j}}{10^4\,{\rm cm}^{-3}}\right)^{\frac{1}{2}} \left(\frac{v_{\rm j}}{1000\,{\rm km\,s}^{-1}}\right) \left(\frac{B_{\rm mc,\perp}}{0.1{\rm mG}}\right)^{-1}$$

Blondin et al. (1989)

Density enhancement in the jet termination region

M.V. del Valle et al. (in preparation)

Conclusions

- Jets from high mass protostars (velocities $\sim 1000 \text{ km s}^{-1}$ and densities $\sim 100 10^4 \text{ cm}^{-3}$) have enough kinetic power to accelerate particles and destabilise non-resonant (Bell) modes
- $\cdot\,$ The maximum energy of protons (and electrons) is \sim 0.1 TeV
- We predict detectable gamma-ray fluxes from IRAS 16547-4247 and IRAS 16848-4603
- Rayleigh-Taylor mixing can make other protostellar jets detectable by Fermi and CTA

The detection of gamma rays from protostellar jets will be very important to study **diffusive shock acceleration** and **magnetic field amplification** in the high-density and low-velocity regime

Questions?

Jet density

Upper limit given by free-free emission ($\epsilon_{ff} < \epsilon_{
m synchr}$): $\frac{n_{\rm ff}}{{
m cm}^{-3}} \approx 1.4 \times 10^5 \left(\frac{d}{{
m kpc}}\right) \left(\frac{S_{\nu}}{{
m mJy}}\right)^{\frac{1}{2}} \left(\frac{R_{\rm j}}{10^{16}{
m cm}}\right)^{-\frac{3}{2}} \left(\frac{v_{
m sh}}{1000 \,{
m km \, s}^{-1}}\right)^{\frac{1}{2}}$

Polarization measurements

Polarization measurement in IRAS 18162 (Herbig-Haro objects HH80 and HH81)

- Low spatial resolution VLA data (C-configuration)
- Magnetic field parallel to the jet axis
- \cdot Equipartition magnetic field \sim 0.2 mG

Carrasco-Gonzalez et al. (2010)

Shift between radio and X-ray emission (peak possition)

Rodríguez-Kamenetzky et al. (2019)

HH 80 (Radio + X-rays)

Shift between radio and X-ray emission (peak possition)

Rodríguez-Kamenetzky et al. (2019)

Cosmic-ray streaming instabilities

Dispersion relation

$$\omega^2 - k^2 v_{\rm A}^2 - k\zeta \frac{v_{\rm sh}^2}{r_{\rm gm}} = 0$$

- + Alfvén (resonant): $k^2 v_{\rm A}^2 > k \zeta \frac{v_{\rm sh}^2}{r_{\rm gm}}$
- Bell (non resonant): $k^2 v_A^2 < k \zeta \frac{v_{sh}^2}{r_{gm}}$ Magnetic field amplification!

