# Cosmic-Ray Lithium & Beryllium Isotopes with AMS02

ICRC 2021 Berlin, Germany

L. Derome,

On behalf of AMS02 collaboration

Laboratoire de Physique Subatomique et de Cosmologie (LPSC) Univ. Grenoble Alpes, CNRS

## Light Isotopes in Cosmic Rays

- Precise measurement of the light elemental fluxes by AMS (H. Gast ICRC21#121)
- → Important information to understand the origin and the propagation of Cosmic Rays
- More detailed information from isotopic composition:
  - Different origins (secondary/primary):
    - <sup>2</sup>H/<sup>1</sup>H (E. Ferronato Bueno ICRC21#113),
      <sup>3</sup>He/<sup>4</sup>He (F. Giovacchini ICRC21#096)
    - Primary <sup>7</sup>Li component? (Boschini, 2020, ApJ, 889, 167).
  - Different propagation history:
    - <sup>10</sup>Be: t<sub>1/2</sub> = 1.4 My: radioactive clock.
- This presentation: measurement of Isotopic Lithium and Beryllium fluxes with AMS 02



#### Isotopes in light cosmic rays:

## Isotopic identification with AMS02



$$M = \frac{RZ}{\gamma\beta} \to \frac{\Delta M}{M} = \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\gamma^2 \frac{\Delta\beta}{\beta}\right)^2}$$

#### • Z measurement:

- L1 UTOF Inner Tracker LTOF
- $\rightarrow$  Negligible charge confusion
- *R* measurement:
  - Tracker (Inner)
  - $\beta$  measurement:
    - TOF:
      - $\Delta 1/eta$  (Z=3) ~ 2 10<sup>-2</sup>
    - RICH NaF ( $n_{\rm NaF}$  = 1.33):  $\beta$  > 0.75,  $\Delta\beta$  (Z=3) ~ 15 10<sup>-4</sup>
    - RICH AGL ( $n_{\rm AGL}$  = 1.05):  $\beta$  > 0.95,  $\Delta\beta$  (Z=3) ~ 5 10<sup>-4</sup>
    - $\rightarrow$  3 analyses which cover different *E* ranges

### Isotopic identification with AMS02



the mass distribution.

## Measurement of Isotopic fluxes

- $E_{kn}$  from  $\beta$  measurements with the TOF and NaF/AGL radiators of RICH,
- Isotopic fluxes estimated from the event rates vs. mass for each  $E_{kn}$  bins,
- Fitted with the sum of scaled mass templates for each isotopes,
- Mass templates include:
  - Detector acceptance from MC,
  - Data/MC corrections,
  - Energy migration,
  - R and  $\beta$  detector responses with nuisance parameters used to describe the associated systematics.
- → Unfolded fluxes directly obtained from the fitting procedure.



## Measurement of Isotopic fluxes

- $E_{kn}$  from  $\beta$  measurements with the TOF and NaF/AGL radiators of RICH,
- Isotopic fluxes estimated from the event rates vs. mass for each  $E_{kn}$  bins,
- Fitted with the sum of scaled mass templates for each isotopes,
- Mass templates include:
  - Detector acceptance from MC,
  - Data/MC corrections,
  - Energy migration,
  - R and β detector responses with nuisance parameters used to describe the associated systematics.
- → Unfolded fluxes directly obtained from the fitting procedure.







## Lithium Isotopic Fluxes

- Isotopic fluxes obtained from the fit.
- Based on 0.8 million lithium events,
- Include Data/MC and unfolding corrections,
- Correction from background coming the interaction of heavier nuclei above L1 applied.



## Lithium Isotopic Fluxes

Combined fluxes from AMS 02 compared with previous experiments.

→ First Measurement of <sup>6</sup>Li and <sup>7</sup>Li fluxes above 0.3 GeV/n and up to 11 GeV/n.



## Errors on isotopic lithium fluxes

- Stat. and syst. (mass id.-acceptance-survival prob.-background-unfolding) errors.
- Estimated with the full covariance matrix: important to describe correlation between energy bins and different isotopes.



## <sup>6</sup>Li/<sup>7</sup>Li ratio

AMS 02 ratio compared with previous experiments:



stat

mass

 $E_{kn}$  [GeV/n]

 $10^{1}$ 

bkgd

unf

tot

above 1 GeV/n up to 11 GeV/n

#### Fitting of Beryllium rates





## **Beryllium Isotopic Fluxes**

- Isotopic fluxes obtained from the fit.
- Based on 0.4 million beryllium events,
- Include Data/MC and unfolding corrections,
- Correction from background coming from the interaction of heavier nuclei above L1 applied.



### **Beryllium Isotopic Fluxes**

Combined and rebinned fluxes from AMS 02 and comparison with previous experiments.

→ First measurement of
 <sup>7</sup>Be, <sup>9</sup>Be and <sup>10</sup>Be fluxes
 above 0.4 GeV/n and up to
 11 GeV/n.



## Errors on isotopic beryllium fluxes

- Stat. and syst. (mass id.-acceptance-survival prob.-backgrougd-unfolding) errors.
- Estimated with the full covariance matrix: important to describe correlation between energy bins and different isotopes.



## Beryllium Isotopic Flux ratios vs $E_{kn}$

Flux ratios



**Errors** 

**Total correlation** 

## Conclusion

- Isotopic composition of light nuclei in cosmic rays is a key measurement to understand cosmic rays origin and propagation.
- Dedicated method based on template used to fit the event rates vs. mass to measure the isotopic fluxes.
- Results presented based on 0.8 million Lithium events and 0.4 million Beryllium events.
- Measurement of Lithium and Beryllium isotopic fluxes and ratios between 0.4 GeV/n and 11 GeV/n with systematic errors and associated covariance matrices assessment have been presented.