

VHE gamma-ray spectral hint of two-zone emitting region in Mrk 501

Josefa Becerra González

on behalf of MAGIC, Fermi-LAT collaborations and MWL collaborators Instituto de Astrofísica de Canarias

jbecerra@iac.es

Collaborators: D. Paneque, C. Wendel, K. Noda, F. Tavecchio, K. Ishio, K. Mannheim, A. Tramacere ++

WANTED MRK 501 FLARING OR QUIESCENT FOR JETS AND EBL STUDIES

MWL STUDIES REWARDED

3

Mrk 501:

high-peaked BL Lac at z=0.03 a famous TeV emitter

MWL STUDIES REWARDED

Mrk 501:

high-peaked BL Lac at z=0.03 a famous TeV emitter

> Its persistent TeV emission during flaring and quiescent phases makes this blazar an excellent candidate for detailed multi-wavelength studies

MWL STUDIES REWARDED

Mrk 501:

high-peaked BL Lac at z=0.03 a famous TeV emitter

> Its persistent TeV emission during flaring and quiescent phases makes this blazar an excellent candidate for detailed multi-wavelength studies

MAGIC telescopes

Energy threshold E>50 GeV

Extreme X-ray flaring activity in 2014

Outstanding X-ray activity during one of our MWL campaigns, in July 2014.

Largest X-ray flux detected by Swift-XRT in 16 years of operation.

From Abe Falcone, Michael Stroh et al. Swift blazar monitoring (https://www.swift.psu.edu/monitoring/)

MWL flux evolution during the 2014 flare

MWL SED overview

MWL SED overview

Tavecchio et al. (2001) ApJ 554, 725

X-ray flux comparable TeV more variable in 1997

MWL SED evolution

One-zone Synchrotron Self-Compton (SSC)

July 19-20

MWL flux evolution during the 2014 flare

The spectral feature appears in both the observed and EBLcorrected SED
It is compatible with the previous and following nights SED

July 19-20 (MJD 56857.98)

Classical functions can be discarded at 3-4σ C.L.

Fits to classical function

	Fit	f_0	Г	b	E_{c}	χ^2/df	p-value	
		$[10^{-10} \text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}]$			[TeV]			
Observed	PL	2.32 ± 0.07	-2.20 ± 0.03	-	-	52.1/15	5.5×10^{-6} (4.6 σ)	
EBL-corr	PL	2.81 ± 0.08	-2.02 ± 0.03	-	-	36.0/15	$1.8 \times 10^{-7} (3.1\sigma)$	
Observed	LP	2.54 ± 0.09	-2.16±0.03	0.08 ± 0.02	-	37.9/14	$5.4 \times 10^{-4} (3.5\sigma)$	
EBL-corr	LP	2.93 ± 0.10	-2.00 ± 0.03	0.04 ± 0.02	-	33.0/14	$2.9 \times 10^{-3} (3.0\sigma)$	
Observed	ELP	2.69±0.12	-2.02 ± 0.07	-0.02 ± 0.05	5.7 ± 2.9	34.8/13	$9.0 \times 10^{-4} (3.3\sigma)$	
EBL-corr	ELP	3.11±0.15	-1.87 ± 0.08	-0.05 ± 0.05	5.8 ± 3.2	31.0/13	3.3×10^{-3} (2.9 σ)	

July 19-20 (MJD 56857.98)

Likelihood Ratio Test

July 19-20 (MJD 56857.98)

Likelihood Ratio Test

July 19-20 (MJD 56857.98)

	Fit	$f_{0} \cdot 10^{10}$	Г	b	$K \cdot 10^5$	β	Ep	χ^2/df	LRT
		$[\text{TeV}^{-1}\text{cm}^{-2}\text{s}^{-1}]$			$[\text{TeV}^{-1}\text{cm}^{-2}\text{s}^{-1}]$		[TeV]		
Observed	LP	2.56 ± 0.09	-2.16 ± 0.03	0.08 ± 0.02	-	-	-	39.8/19	
Observed	LP+EP	2.54 ± 0.10	-2.26 ± 0.04	0.14 ± 0.03	7.7 ± 1.7	9.1 ± 3.2	3.04 ± 0.10	13.5/16	4.5σ
EBL-corr	LP	3.00 ± 0.11	-1.99 ± 0.03	0.04 ± 0.02	-	-	-	35.4/19	
EBL-corr	LP+EP	2.99 ± 0.11	-2.08 ± 0.04	0.10 ± 0.03	13.0 ± 3.0	10.0 ± 3.6	3.03 ± 0.10	14.6/16	3.9σ

Monte Carlo simulations (10,000 realizations): χ2 difference between a log-parabola fit (null hypothesis) w.r.t. log-parabola+narrow component peaking a^t different energies

MAGIC Coll. (JBG, DP) 2020, A&A, 637, A86

Monte Carlo simulations (10,000 realizations): χ2 difference between a log-parabola fit (null hypothesis) w.r.t. log-parabola+narrow component peaking at different energies

a) Pile up in the energy electron distribution due to stochastic acceleration

JetSeT open code

b) Structured jet: two-zone SSC model

MAGIC Coll. (JBG, DP) 2020, A&A, 637, A86

b) Structured jet: two-zone SSC model

MAGIC Coll. (JBG, DP) 2020, A&A, 637, A86

Tavecchio, JBG et al., 2011, A&A, 534, A86

c) Magnetospheric vacuum gap model + one-zone SSC

Mostrar la página siguiente (→)

Theoretical interpretation

c) Magnetospheric vacuum gap model + one-zone SSC

MAGIC Coll. (JBG, DP) 2020, A&A, 637, A86 Wendel, JBG, et al. 2021, A&A, 646, A115

See Talk #141 by C. Wendel

Take home message

- Detection of the historical maximum of the X-ray emission during the 16 years Swift-XRT operation (at the level of the historical 1997 flare)
- Detected the first evidence for a narrow VHE spectral feature, centered at approx. 3 TeV
- This feature could be interpreted within the framework of 3 different theoretical scenarios:
 - A) Pile up in the electron energy distribution
 - B) Two-zone SSC model
 - C) Magnetospheric gap model + one-zone SSC

