

On the gamma-ray emission of W44 and it surroundings

Giada Peron

F. Aharonian, S. Casanova, R. Zanin, C. Romoli

Supernova Remnants

Supernova Remnants (SNRs) are considered to be the main accelerators of Galactic Cosmic Rays

- Sufficient power to maintain GCRs [Baade&Zwicky 1934]
- Efficient acceleration mechanism: DSA [Bell 1978, Bandfor&Ostriker 1978]
- Prominent gamma-ray emission both at GeV and TeV; [e.g. Aharonian 2013]

BUT...

- No clear observation compatible with PeV emission;
 - Is escape playing a role? [e.g. Gabici+2007]

W44

Perfect target to study escape because:

- **Middle age** (10000 years) : particle had the time to leave the remnant;
- Massive molecular cloud complex in its surroundings;

Spectrum:

Low energy \rightarrow hadronic origin of the emission

HIgh energy \rightarrow escape

Figure adapted from Peron et al. 2020

The surroundings

- Unveiled two extended sources at the opposite edge of the SNR along the major axis;
- The gamma-ray emission do not correspond to regions of enhanced gas density → enhanced CR density;

- The rest of the gas has a spectrum compatible with the CR sea;
- The morphology and the spectrum of the two sources is different

Figures adapted from Peron et al. 2020

