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Primary objectives of the CALET (CALorimetric Electron Telescope) mission are to search for
possible nearby cosmic-ray sources and dark matter signatures with the precise measurement of
the electron and positron (all-electron) spectrum. The instrument, consisting of a charge detector,
an imaging calorimeter and a total absorption calorimeter, is optimized to measure the all-electron
spectrum well into the TeV region with a thick calorimeter of 30 radiation length with fine shower-
imaging capability. Due to the excellent energy resolution (a few % above 10 GeV) and the
outstanding e/p separation (∼ 105), CALET achieves optimal performance for a detailed search
for structures in the energy spectrum. CALET has been accumulating scientific data for more
than five years without any major interruption, and the statistics of observed electron events has
increased more than double since the latest publication in 2018. In this paper we will present
precise measurements of the all-electron spectrum up to several TeV, as obtained with the high
statistics data, and we will briefly discuss about its interpretation.
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1. Introduction

High-energy cosmic-ray electrons provide a unique probe of nearby cosmic accelerators. Elec-
trons rapidly lose energy via inverse Compton scattering and synchrotron emission during propa-
gation in the Galaxy. Since their diffusion distance above 1 TeV is limited to less than 1 kpc, only
a few super nova remnants as potential TeV sources are located in the vicinity of the Solar System.
A precise measurement of the electron spectrum in the TeV region might reveal interesting spectral
features to provide the first experimental evidence of the possible presence of a nearby cosmic-ray
source [1, 2].

In addition, the apparent increase of the positron fraction over 10 GeV established by Payload
for Antimatter Matter Exploration and Light nuclei Astrophysics (PAMELA) [3] and the Alpha
Magnetic Spectrometer (AMS-02) [4] may require a primary source component of the positrons in
addition to the generally accepted secondary origin. Candidates for such primary sources range from
astrophysical (pulsar) to exotic (dark matter). Since these primary sources emit electron-positron
pairs, it is expected that the all-electron (electrons and positrons) spectrum would exhibit a spectral
feature due to the primary source component of electrons and positrons, in the corresponding energy
range above 10 GeV.

The Calorimetric Electron Telescope (CALET) is a space experiment on the International Space
Station (ISS) for long term observations of cosmic-rays, which is optimized for the measurement of
the all-electron spectrum [5]. It was launched on August 19, 2015 with the Japanese carrier H-IIB,
delivered to the ISS by the HTV-5 Transfer Vehicle, and installed on the Japanese Experiment
Module - Exposed Facility (JEM-EF). The first result of the all-electron spectrum was published
in the energy range from 10 GeV to 3 TeV as the world’s first space observation up to the TeV
region [6]. Subsequently, the updated spectrum was published with statistics larger by a factor of
∼2 compared to the first by using more than 2 years of flight data and the full geometrical acceptance
in the high-energy region [7]. The energy range is extended to 4.8 TeV, and the observed spectrum
shows a suppression of the flux above 1 TeV, compatible with the DAMPE result [8]. In this paper,
we present a preliminary CALET all-electron spectrum obtained from observations over ∼5 years
with statistics increased furthermore by a factor of ∼2.3 since the last publication [7]. The result
is compared with other observations, and a plausible interpretation is briefly discussed with its
tentative spectral fitting in the 10 GeV-4.8 TeV range including a possible contribution from pulsars
and the Vela SNR.

2. Instrument

CALET employs a fully active calorimeter with thirty radiation-length thickness for particles
at normal incidence. It consists of a charge detector (CHD), a three radiation-length thick imaging
calorimeter (IMC), and a twenty-seven radiation-length thick total absorption calorimeter (TASC).
It has a field of view of ∼45◦ from zenith and a geometrical factor of ∼ 1,040 cm2 sr for high-energy
electrons. CHD, which identifies the charge of the incident particle, is comprised of a pair of
plastic scintillator hodoscopes arranged in two orthogonal layers. IMC is a sampling calorimeter
alternating thin layers of Tungsten absorber, optimized in thickness and position, with layers of
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scintillating fibers read-out individually. TASC is a tightly packed lead-tungstate (PbWO4; PWO)
hodoscope, capable of almost complete absorption of the TeV-electron showers.

Figure 1 shows a 3.05 TeV-electron candidate and a proton candidate with comparable energy
deposit (2.89 TeV) in the detector. Compared to hadron showers, which have significant leakage,
the containment of the electromagnetic shower creates a difference in shower shape, especially in
the bottom part of TASC, allowing for an accurate electron identification in the presence of a large
hadron background. Together with the precision energy measurements from total absorption of
electromagnetic showers, it is possible to derive the electron spectrum well into the TeV region with
a straightforward and reliable analysis.

Figure 1: Examples of TeV event candidates showing energy deposit in each detector channel in the X Z
and Y Z views. Left: An electron (or positron) candidate (reconstructed energy of 3.05 TeV and energy
deposit sum of 2.89 TeV). Right: A proton candidate (energy deposit sum of 2.89 TeV).

3. Observation and Detector Performance

Since the start of scientific observations on October 13, 2015, smooth and continuous operations
have being taken place. The live time fraction is considerably high being 86 % without any
interruption of observation by unexpected accidents. Fig. 2 shows the time profile of the real time
and the live time of the observations [9].

While excellent energy resolution inside the TeV region is one of the most important features of
a thick calorimeter instrument like CALET, calibration errors must be carefully assessed and taken
into account in the estimation of the actual energy resolution. Our energy calibration includes the
evaluation of the conversion factors between analog-to-digital converter units and energy deposits,
ensuring linearity over each gain range (TASC has four gain ranges for each channel), and provides
a seamless transition between neighboring gain ranges [10]. Temporal gain variations occurring
during long time observations are also corrected in the calibration procedure. The errors at each
calibration step, such as the correction of position and temperature dependence, consistency between
energy deposit peaks of non-interacting protons and helium, linear fit error of each gain range, and
gain ratio measurements, as well as slope extrapolation, are included in the estimation of the
energy resolution. As a result, a very high resolution of 2% or better is achieved above 20 GeV
[10]. Moreover, the very large dynamic range of the energy measurement as presented in Fig. 3 is
confirmed without saturation of measured energy up to 1 PeV for deposit energy in TASC. These
spectra are checked monthly to confirm the stability of the extrapolation using four gain ranges.

It should be noted that, even with such a detailed calibration, the determining factor for the
energy resolution is the calibration uncertainty, as the intrinsic resolution of CALET is ∼1% .
Intrinsic resolution refers to the detector’s capability by design, taking advantage of the thick, fully
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active total absorption calorimeter. Also important is the fact that the calibration error in the lower
gain ranges is crucial for the spectrum measurements in the TeV range.

Figure 2: Time dependences of the accumulated real
time and live time of the observations since Dec. 2015

Figure 3: Observed spectrum of the energies de-
posited in TASC after calibrations.

4. Data Analysis

In this paper, we report the results obtained by analysis of 1815 days of flight data collected with
a high-energy shower trigger [9]. The analysis has been carried out for the observed events in the full
detector acceptance, by a similar procedure as described in Ref. [7]. A Monte Carlo (MC) program
was used to simulate physics processes and detector response based on the simulation package
EPICS [11] (EPICS9.20/COSMOS8.00). Using MC event samples of electrons and protons,
event selection and event reconstruction efficiencies, energy correction factor, and background
contamination were derived. An independent analysis based on GEANT4 [12] was performed,
and small differences between the MC models are included in the systematic uncertainties. The
GEANT4 simulation employs the hadronic interaction models FTFP_BERT as the physics list,
while DPMJET3 [13] is chosen as the hadronic interaction model in the EPICS simulation.

We use the "electromagnetic shower tracking" algorithm [14] to reconstruct the shower axis
of each event, taking advantage of the electromagnetic shower shape and IMC design concept. As
input for the electron identification, well-reconstructed and well-contained single-charged events
are preselected by (1) an off-line trigger confirmation, (2) a geometrical condition, (3) a track quality
cut to ensure reconstruction accuracy, (4) a charge selection using CHD, (5) having a longitudinal
shower development, and (6) a lateral shower containment consistent with those expected for
electromagnetic cascades.

In addition to fully contained events, the events incident from the IMC sides and exiting through
the sides of TASC are used for analysis. For events not crossing the CHD, we use the energy deposit
of the first hit IMC layer to determine their charge. The path length inside TASC is required to be
longer than that of vertical depth of TASC, i.e. twenty-seven radiation lengths.

The energy of incident electrons is reconstructed using the energy correction function, which
converts the energy deposit information of TASC and IMC into primary energy for each geometrical
condition. In order to identify electrons and to study systematic uncertainties in the electron
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identification, we applied two methods: a simple two-parameter cut and a multivariate analysis
based on boosted decision trees (BDTs).

Calculation of event selection efficiencies, BDT training, and estimation of proton background
contamination are carried out separately for each geometrical condition and combined in the end
to obtain the final spectrum. Considering the fact that the lower energy region is dominated
by systematics in our analysis, and therefore more statistics would not significantly improve the
precision of our data, only the fully-contained events are included in the lower energy region below
475 GeV. Examples of a BDT response distribution including all acceptance conditions are shown
in Fig. 4. In the final electron sample, the resultant contamination ratios of protons are ∼5 % up to
1 TeV, and 10% - 20% in the 1 - 4.8 TeV region, while keeping a constant high efficiency of 80 %
for electrons.

Figure 4: Examples of BDT response distributions in the 476 < E < 599 GeV bin (left) and in the highest
region energy , 1196 < E < 4755 GeV bin. (left), including all acceptance conditions .

The absolute energy scale was calibrated and shifted by + 3.5% [6] as a result of a study of
the geomagnetic cutoff energy. Since the full dynamic range calibration [10] was carried out with
a scale-free method, its validity holds regardless of the absolute scale uncertainty.

The systematic uncertainties are described in details at Ref. [15] and an accompanied paper in
this conference [16]

5. Electron + Positron Spectrum

Figure 5 shows the extended electron and positron spectrum in this analysis using the observed
events with statistics increased by a factor of 2.3 since the last publication [7]. The error bars along
horizontal and vertical axes indicate bin width and statistical errors, respectively. The gray band
is representative of the quadratic sum of statistical and systematic errors, using the same definition
as the one given in Ref. [6]. Systematic errors include errors in the absolute normalization and
energy dependent ones, except for the energy scale uncertainty. The energy dependent errors
include those obtained from BDT stability, trigger efficiency in the low-energy region, tracking
dependence, dependence on methods of charge identification, and of electron identification, as well
as MC model dependence. In more refined interpretation studies, the latter four contributions and
normalization could be treated by including their weights as nuisance parameters, while the first
two components must be added in quadrature to the statistical errors. Conservatively, all of them
are included in the total error estimate in Fig. 5.

Comparing with other recent experiments in space (AMS-02, Fermi Large Area Telescope
(Fermi-LAT), and DAMPE), our spectrum shows good agreement with AMS-02 data below 1 TeV.
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Figure 5: Cosmic-ray all-electron spectrum measured by CALET from 11 GeV to 4.8 TeV using the same
energy binning as in our previous publication [7], where the gray band indicates the quadratic sum of
statistical and systematic errors (not including the uncertainty on the energy scale). Also plotted are direct
measurements in space [8, 17–19] for comparison.

In the energy region from 40 to 300 GeV, the power-law index of CALET’s spectrum is found to
be -3.128±0.019, which is consistent with other experiments within errors. However, the spectrum
is considerably softer from 300 to 600 GeV than the spectra measured by DAMPE and Fermi-LAT.
The CALET results exhibit a lower flux than those of DAMPE and Fermi-LAT from 300 GeV up
to near 1 TeV, indicating the presence of unknown systematic effects.

To check if the CALET spectrum is consistent with a possible break at 0.9 TeV, as suggested by
DAMPE’s observations, we have adopted exactly the same energy binning as DAMPE to show our
spectrum. In Fig. 6, we fit our spectrum with a smoothly broken power-law model [8] in the energy
range from 55 GeV to 4.8 TeV, while fixing the break energy at 914 GeV( blue line). A broken
power law steepening from -3.151 ±0.012 by -0.873±0.178 fits our data well, with j2 = 11.64 and
number of degrees of freedom (NDF) equal to 29. This result is consistent with DAMPE regarding
the spectral index change of 0.7±0.3. A single power-law fit over the same energy range (black
line) gives an index -3.197±0.011 with j2 /NDF=54.50/30, which means that the broken power law
is favored with 6.55 sigma significance over the single power law. An exponentially cut-off power
law [20] (green line) is also presented for comparison, which has the power index of -3.054±0.026
below a cutoff energy of 2170 GeV± 340 GeV with j2 /NDF =11.25/29 which gives a significance
of f=6.58 over the single power law.

On the other hand, as presented in Fig. 6, the flux in the 1.4 TeV bin of DAMPE’s spectrum,
which might imply a peak structure, is not compatible with CALET results at a level of > 4 sigma
significance, including the systematic errors from both experiments.

Here, we try to explain the CALET energy spectrum observed in a whole energy region.
Figure 7 presents one example of fitting a model for the electron and positron origins described in
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§1. The positron flux of AMS-02 is fitted by contribution from secondaries (red dashed line) +
several pulsars (dashed-dotted line), and the electron flux is fitted by secondaries + distant SNRs
(black dashed line) with cut-off at 1 TeV. As the dominating source above 1 TeV, we assume a
possible contribution from the Vela SNR (green line), which is explained by energy output of 2.08
x 1048 erg in electron CR above 1 GeV. The spectra by Vela and secondaries (e−,e+) are calculated
with the numerical propagation code DRAGON [21], which is also used to define the propagation
parameters via calculation of the nuclei spectra, concurrently providing spectra of the secondary
electrons and positrons forming part of the background [22]. The details of this whole-region
interpretation of the all-electron spectrum and its implications of the nearby source contribution are
explained in Ref. [22]. However, for the highly desired goal of getting conclusive information of
the nearby source contribution in the TeV region, we need still to extend the energy spectrum up to
20 TeV with much more statistics.

Figure 6: All-electron spectrum measured by
CALET from 11 GeV to 4.8 TeV using the same en-
ergy binning as DAMPE’s result [8]. See text for
details of fittings.

Figure 7: Tentative spectral fit over a whole region
of the CALET observations including the pulsars and
the Vela SNR above 1 TeV. See details in text.

6. Summary and Future Prospects

We have extended our previous result [7] of the CALET all-electron spectrum with an approx-
imate increase by a factor of 2.3 of the statistics. The data in the TeV region show a suppression
of the flux compatible with the DAMPE results, and the accuracy of the break’s sharpness and
position, and of the spectral shape above 1 TeV, are improved by the better statistics. The CALET
observations on the ISS approved to continue up to 2024 (at least) will bring further increase of the
statistics and reduction of the systematic errors based on the analysis. By specifying the breakdown
of systematic uncertainties, our extended all-electron spectrum together with the AMS-02 positron
flux measurement provides essential information to investigate spectral features in the framework
of nearby SNRs and pulsars and/or dark matter inspired models.
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