"Simulation Studies of the MACE gamma ray Telescope : Sensitivity, Angular resolution and energy resolution

CHINMAY BORWANKAR Bhabha Atomic Research Center, Mumbai – 400085, India (For the simulation team of MACE)

भाभा परमाणु अनुसंधान केंद्र BHABHA ATOMIC RESEARCH CENTRE

Extensive Air Shower Simulation

- CORSIKA (COsmic Ray SImulation for Kascade) (https://www.ikp.kit.edu/corsika/79.php)
- > High Energy Model : QGSJET-I (Energy >= 80 GeV)
- Low Energy Interaction Model : GHEISHA (Energy <= 80 GeV)</p>
- > Electromagnetic Interactions : EGS4 / NKG
- Hanle Altitude : 4270 m asl
- Geomagnetic Field : IGRF12 => Vertical : 38.75 µG, Horizontal Component : 32.47 µG
- IACT/ATMO extension (Konrad Bernlohr, Astroparticle Physics, 2008 (30), 149)

Simulation of Telescope Response

Simulation Of Telescope Response : Reflector

4

Simulation Of Telescope Response : LONS

A Parabolic fit to the observed flux of LONS at HCT site

Simulation Of Telescope Response : LONS

 Photo electrons due to Light of Night Sky given by,

$$N_{phe} = \Omega_{CPC} A_{mirror} \int \Phi(\lambda) \eta_{mirror}(\lambda) \eta_{PMT}(\lambda) d\lambda sec^{-1}$$

- For coincidence gate width of 5 ns, contribution due to LONS ~ 1.46 photo-electrons per pixel
- Poissonian distribution

Reflectivity and Quantum Efficiency for the MACE

6

Simulation Of Telescope Response : Camera

- > 1088 PMTs with hexagonal CPC
- > 16 PMT x 68 Modules
- > 24 x 24 trigger
- > Angular size ~ 0.125°
- > Total FOV ~ 4.3° x 4.0°
- > Trigger FOV ~ 3.02° x 2.62°

Trigger Performance : Trigger Configuration

- Afterpulsing rate of PMTs primary factor
- Average SCR of 3 gain calibrated PMTs with gains ~42000, ~54000 and ~60000

$$R_{Chance}(m) = m C_m^n R_{pixel}(q_o)^m \tau^{m-1}$$

$$FLT(l, q_o) = l C_l^M R_{pixel}(q_o)^l \tau^{l-1}$$

 $SLT(m, q_o: l_1, l_2) = C \cdot FLT(l_1, q_o) FLT(l_2, q_o) \tau$

Estimated Optimum Trigger Configuration 4 CCNN Trigger Configuration Single Channel Discrimination Threshold of 9.0 photo electrons

ICRC 2021, Berlin

8

Trigger Performance : Database

Primary Particle	Gamma				Electron			
Zenith Angle (deg)	0°	20°	40°	60°	0°	20°	40°	60°
Energy Range (GeV)	$5 - 10^4$				5 - 104			
Impact Distance (m)	400	450	500	550	400	450	500	550
View cone angle (deg)	-	-	-	-	4	4.5	5	5.5

Primary Particle	Proton				Alpha			
Zenith Angle (deg)	0°	20°	40°	60°	0°	20°	40°	60°
Energy Range (GeV)	$10 - 10^4$				10 - 104			
Impact Distance (m)	500	550	600	650	500	550	600	650
View cone angle (deg)	5	5.5	6	6.5	5	5.5	6	6.5

9

Trigger Performance : Results

- Increasing trigger energy threshold with increasing zenith angle
- Enrgy threshold ~15 GeV at zenith angle of 0° – 20°

Integral Flux Sensitivity : Database

		Gamma	Proton	Alpha	Electron
5°	Total (x 10 ⁶)	16.8	164	38.4	128
	Triggered	545368	269503	223674	167285
25°	Total (x 10 ⁶)	16.8	164	38.4	128
	Triggered	460274	192466	165274	163912
40 °	Total (x 10 ⁶)	12.8	192	38.4	128
	Triggered	429617	432351	203715	324992

Integral Flux Sensitivity : Results

Sensitivity based on α – analysis at 40° zenith angle

- Sensitivity of 1.7 % Crab units at Energy Threshold ~ 52 GeV
- Crab detection time of ~80 sec

Angular Resolution : Database

Zenith	Total	Triggered		
5°	1.92 x 10 ⁶	472325		
25°	1.92 x 10 ⁶	457120		
40 °	1.92 x 10 ⁶	563121		

- Leakage > 0.1 and size < 50.0 rejected
- From the rest ~80000 used for RFM training at each zenith
- Same database for the estimation of energy resolution

Angular Resolution : Results

MACE angular PSF as function of energy MACE 68% containment radius as function of energy

 Comparable angular PSF with MAGIC-I

Integral Sensitivity using θ^2

No significant difference compared to alpha analysis

Energy Resolution : Results

Conclusions

- MACE Achieves the target of wide energy range which it set out for
- > Low energy threshold, good sensitivity over wide zenith angle range of 0°- 40°
- Very good instrument for detailed spectral and temporal study of variety of VHE sources detected by Fermi/LAT and other IACTs

Thank You

18 ICRC 2021, Berlin