

The Neutrino Contribution of Gamma-Ray Flares from Fermi Bright Blazars

K.Yoshida¹, M.Petropoulou², K.Murase³, F.Oikonomou⁴

Shibaura Institute of Technology, Japan
 National and Kapodistrian University of Athens, Greece
 The Pennsylvania State University, USA
 Norwegian University of Science and Technology, Norway

37th ICRC (Online - Berlin, Germany, July 12th, 2021)

Isotropic Diffuse Neutrinos and Blazars

The isotropic diffuse neutrinos: => produced by a large number of extragalactic sources

A candidate of the origin of Ultra High Energy Cosmic rays and High Energy Neutrinos

In This Work

- Analysis of flares of 145 gamma-ray blazars of Fermi-LAT Monitored Source List and TXS 0506+056
 - 0.1-316GeV gamma-ray light curves with one week time bin through 2008-2019
 - I05 FSRQs, 31 BL Lacs, and 9 blazar candidates of uncertain type
- Estimation of high-energy neutrino fluxes of blazars from the gamma-ray flare fluxes
- Constrain of the contribution of bright gamma-ray blazar flares to the isotropic diffuse neutrino flux

Extraction of Gamma-ray Flares

Application of a Bayesian Blocks algorithm for gamma-ray light curves => Gamma-ray quiescent flux level

Flaring threshold level => gamma-ray flare flux

Gamma-ray Flare Duty Cycle and Flare Energy Fraction

Cumulative distribution

Flare Duty Cycle = (Flaring Time)/(Total Observation Time) Cumulative distribution Flare Energy Fraction = Fraction of Energy Emitted in the Flaring State

Median of Flare Duty Cycles = 1.9%

Median of Flare Energy Fraction = 7.5%

K-S test => No significant difference between FSRQs and BL Lacs for Flare Duty Cycles and Flare Energy Fractions

A Simple Scaling Relation between the Gamma-ray and Neutrino Fluxes

Leptonic models of blazar gamma-ray emission

=> A relation between the gamma-ray and neutrino flux:

$$F_
u \propto F_\gamma^\gamma$$
 $\gamma = 1.0-2.0$ e.g. Murase, Oikonomou, Petropoulou (2018)

A simple scaling relation between the gamma-ray and neutrino fluxes, independent of the details of neutrino production

$$\epsilon_{\nu}F_{\nu}^{fl} = \epsilon_{\nu}F_{\nu}^{q} \left(\frac{F_{\gamma}^{fl}}{F_{\gamma}^{q}}\right)^{\gamma}$$

 $\epsilon_{\nu}F_{\nu}^{fl}$: Flaring neutrino flux $\epsilon_{\nu}F_{\nu}^{q}$: Quiescent neutrino flux F_{γ}^{fl} : Flaring gamma-ray flux F_{γ}^{q} : Quiescent gamma-ray flux

Quiescent Neutrino Flux

Scenario 1 Quiescent X-ray flux = Upper limit to the quiescent neutrino flux

e.g. Murase, Oikonomou, Petropoulou (2018), Padovani et al. (2019)

Blazar X-ray light curves in 0.3–10 keV based on 14 years of Swift-XRT data (P. Giommi et al. 2019)

$$\epsilon_{\nu} F_{\nu}^{fl} = A \cdot \epsilon_X F_X^q \left(\frac{F_{\gamma}^{fl}}{F_{\gamma}^q} \right)^{\gamma}$$

$$\epsilon_X F_X^q$$
: Quiescent X-ray flux
A: Normalization parameter

Scenario 2
 Quiescent gamma-ray flux = Upper limit to the quiescent neutrino flux

$$\epsilon_{\nu} F_{\nu}^{fl} = A \cdot \epsilon_{\gamma} F_{\gamma}^{q} \left(\frac{F_{\gamma}^{fl}}{F_{\gamma}^{q}} \right)^{\gamma}$$

 $\epsilon_{\gamma} F_{\gamma}^{q}$: Quiescent gamma-ray flux A: Normalization parameter

Estimated Neutrino Flare Fluxes from Gamma-ray Blazars

Estimated muon neutrino flare fluxes with A=1.0 and γ =1.5 as a function of sin δ (δ = declination), compared to IceCube 90% sensitivity for a week

 $\epsilon_{\nu}F^{q}_{\nu} = A \cdot \epsilon_{\gamma}F^{q}_{\gamma}$

 $\epsilon_{\nu}F^{q}_{\nu} = A \cdot \epsilon_{X}F^{q}_{X}$ Scenario1: Scenario 2: 10⁻⁶

 \bigcirc A = 1.0 for the sources whose all flares are less than the sensitivity If not, A is reduced for the maximum flare of the source to be the sensitivity.

Contribution of Blazar Flares to the Isotropic Diffuse Neutrino Flux in Accordance with Stacking/Clustering Constraints

Contribution of Bright Blazars to the Isotropic Diffuse Neutrino Flux

U.L.s of the contribution of bright gamma-ray/neutrino blazars to the isotropic diffuse neutrino flux $(E_v^2 \Phi_v)$ as a function of the flare significance s

Almost independent of the flare significance s, the power index γ , and the two scenarios

The U.L.s of this sample, i.e. the bright gamma-ray and neutrino blazars: ~20 % of the isotropic diffuse neutrino flux => Dimmer neutrino blazars could make a larger contribution.

Summary

- For flare duty cycles and flare energy fractions, no significant differences between FSRQs and BL Lacs
- By using the simple scaling relation $L_v \propto (L_\gamma)^\gamma$ (γ =1.0-2.0), we estimated the neutrino fluxes of gamma-ray blazars.
- Comparison of the neutrino fluxes with IceCube sensitivity suggests:
 - The quiescent neutrino flux tends to be smaller than the quiescent X-ray and gamma-ray flux.
 - The power index γ tends to be closer to 1.0 rather than 2.0.
- The upper limits of the contribution of bright gamma-ray and neutrino blazars to the isotropic diffuse neutrinos are ~20 %.
 - Dimmer neutrino blazars could make a larger contribution to the isotropic diffuse neutrino flux.