

Boosting the performance of the neural network using symmetry properties for the prediction of the shower maximum using the water-Cherenkov Detectors of the Pierre Auger Observatory as an example

Steffen Hahn, Markus Roth, David Schmidt, Darko Veberič

The Pierre Auger Observatory

The Pierre Auger Observatory is the Earth's largest (3000 km²) detector of extensive air showers caused by ultra-high energy cosmic rays (> 10^{18.5} eV). It offers insights into particle physics beyond human-made accelerators and galactic sources from which these particles emerge.

To obtain physical insights, we need a good estimate of the mass of cosmic rays. One Fluorescence Detector(s) (FD) maximum X_{max} – the point in shower development where the shower emits maximum fluorescence light. We can easily observe this with help of the FDs. However, these have only an uptime of ~ 15%. Therefore, we need a way to estimate X_{max} with the SD.

measure longitudinal profile of showers

Surface Detector (SD)

- 1660 water-Cherenkov tanks
- measures footprint of showers

Intrinsic Symmetries of the SD

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

energy calibration of observatory

The SD is a nearly perfect triangular lattice. Assuming (to first order) that all showers are uniformly distributed in the azimutal direction (ϕ), we can find twelve unique transformations of the shower footprint that correspond to symmetries around the station (HS) closest to the shower core. Hence, we are able to rotate (**R**) and mirror (**M**) all shower footprints into a 30° interval reducing the phase space effectively by fac-

• wrong ϕ reconstruction irregularities of the grid

Neural Network approach

It has the following architecture:

concatenated to the input from the last step.

non-linearity.

Institute for Astroparticle Physics (IAP)

www.kit.edu