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The Pierre Auger Observatory 1

The Pierre Auger Observatory is the Earth’s
largest (3000 km2) detector of extensive air
showers caused by ultra-high energy cos-
mic rays (> 1018.5 eV). It offers insights into
particle physics beyond human-made ac-
celerators and galactic sources from which
these particles emerge.

To obtain physical insights, we need a good
estimate of the mass of cosmic rays. One
way to get this is to determine the shower
maximum 𝑋max – the point in shower devel-
opment where the shower emits maximum
fluorescence light. We can easily observe
this with help of the FDs. However, these
have only an uptime of ∼ 15%. Therefore,
we need a way to estimate 𝑋max with the SD.
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Intrinsic Symmetries of the SD 2
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The SD is a nearly perfect tri-
angular lattice. Assuming (to
first order) that all showers are
uniformly distributed in the az-
imutal direction (𝜙), we can find
twelve unique transformations of
the shower footprint that corre-
spond to symmetries around the
station (HS) closest to the shower
core. Hence, we are able to rotate
(𝑹) and mirror (𝑴) all shower foot-
prints into a 30 ∘ interval reducing
the phase space effectively by fac-
tor of twelve.

Potential problems
wrong 𝜙 reconstruction
irregularities of the grid

SD Traces 3
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three example traces
The time signal measured by
the SD detector stations is
quite complicated due to the
complex shower process. There-
fore, those signals may contain
hidden/difficult-to-extract in-
formation that could be used
for improved prediction of 𝑋max.
Because of this, Neural Networks
are a valid option for the analysis
the shower footprint.

Neural Network approach 4

After encoding the shower footprint in a rectangular grid we are able to apply standard
neural network algorithms. First, we need to compress the traces to a subsample of
features that can be used to predict 𝑋max. We use a feed-forward, convolutional sub-
network for this task. This subnetwork uses the sameweights for each detector station.
It has the following architecture:
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Afterwards, the trace features are concatenated to a map of the trigger times and trig-
ger maps (10 → 12). In the second part of the network we want to correlate the spatial
information contained in the shower footprint. To do this, we use “dense convolu-
tions”. In each step, a convolution of the same filter size as the input is applied and
concatenated to the input from the last step.
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Flattening the output of the spatial analyzer, we use a fully connected final layer as
predictor for 𝑋max. In the entire network we use ReLu activation functions to introduce
non-linearity.

Results from Simulations 5
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To analyze the effect of exploit-
ing the symmetries of the grid, we
train the same network architec-
ture on the same base dataset and
compare the deviation 𝜎Δ𝑋max of
the difference between prediction
and real values of 𝑋max. We use
only proton primaries for this test
to keep the phase space simple.
Over the complete energy range
of our dataset the prediction im-
proves visibly.

Since shower footprints are elongated
along the shower axis there is another
advantage of using the symmetry oper-
ations. We are able to maximize the

amount of information used in our rectan-
gular map by rotating all showers in such
a way to fill up the corners of incomplete
rings around the hottest station.

𝑥

𝑦

𝑥 𝑥𝑠

𝑦 𝑠

Outlook 6

The method and network are not specif-
ically tied to predicting 𝑋max. After ini-
tial testing, it can be used for any observ-
able. Thus, it is a multi-purpose approach

which we can extent to all possible quan-
tities. Furthermore, this approach can be
applied to any complex problem exhibit-
ing symmetries.
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