Modified Characteristics of Hadronic Interactions (MOCHI)

J. Blažek^a, J. Vícha^a, J. Ebr^a, R. Ulrich^b, T. Pierog^b and P. Trávníček^a ^a FZU – Institute of Physics CAS, Prague, Czech Republic ^bKarlsruhe Institute of Technology, Karlsruhe, Germany

What is this contribution about?

Simulations of extensive air showers (EAS) produced by ultrahigh energy cosmic rays (UHECR) using the standard CORSIKA package with Sibyll 2.3d – with the added twist of **ad-hoc modifications of parameters** of the hadronic collisions: **crosssection, multiplicity and elasticity.**

Why is it relevant/interesting?

There is tension between data from UHECR experiments – such

as the Pierre Auger Observatory and Telescope Array – **and simulations**. The data show more muons reaching ground than the simulations predict. **Could this tension be relieved if the basic properties of the interactions were reasonably modified?** This question was asked previously (R. Ulrich et al., Phys. Rev. D, 83 (2011) 054026) – but answered only in 1-D simulations. Now with **full 3-D simulations**, we have access to much more relevant observables for ground-based detection – we can now also change multiple parameters at once!

What has been done?

The code allowing the change of interaction parameters has been ported to CORSIKA. A library of proton-induced showers was produced at different zenith angles and with different values of modification strength for all three parameters – **cross-section, multiplicity and elasticity** – within bounds of the current accelerator data. The depth of the shower maximum X_{max} and the number of muons 1000 meters from the shower core $S_{\mu}^{*}(1000)$ were retrieved.

What is the result?

The effect of the modifications on $S_{\mu}*(1000)$ **depends a lot on the zenith angle** of the primary cosmic ray. Different parameters push the results in different directions in the $X_{max} - S_{\mu}*(1000)$ plane – **not quite far enough** compared to published data, but in **promising** ways. Modifications of different parameters in parallel make sense, because the result is **not a simple addition of individual effects.**