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• Introduction and motivations

• Change in the standard paradigm of Alfvénic CR diffusion


- The role of the non-linear extensions of the QLT


- Diffusion coefficients resulting from the compressible modes

• Connecting the micro-physics of ISM turbulence with local CR observables


- The role of B/C to constrain the confining power of the theory


- A look at the hadronic species.
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• Conventional diffusion based on QLT from slab turbulence 

- Resonant scattering only ( -function resonance) 

- Scattering against Alfvénic isotropic turbulence only 

-  

• MHD turbulence cascades in 3D and is decomposed into three propagating modes  

(fast and slow-magnetosonic, Alfvén) [e.g. Kulsrud05] 

• Alfvén modes are anisotropic  

[Goldreich&Sridhar95, Cho&Lazarian03, Yan&Lazarian02,04,08]

  highly inefficient in confining CRs [Chandran00].
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Our result for D(E)
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 changing with the properties of the turbulenceD(E)
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A long way to go 

exploring other aspects 

of the theory!
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3D correlation tensors from 1D scalings
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1D calculation

Little turbulent power in k∥
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An enlightening issue?
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Connections with the propagation models

19
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where the best-fits of the four free parameters have been determined in Ref. [19] to be
B

0
X = 4.6 µG, ⇥0

X = 49�, Rc
X = 4.8 kpc, and RX = 2.9 kpc. The role of this magnetic

field component is crucial in our setup, since it determines the progressively more and
more “vertical escape” (i.e., along z) of the CRs in the parallel direction as R decreases.
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Insights towards anisotropic transport! 

D∥ ≠ D⊥


