Highlights from the Telescope Array Experiment

W.= 11" "

37th ICRC, Berlin, 12-23 July 2021 Grigory Rubtsov, INR RAS, Moscow for the TA Collaboration

photo by Oleg Kalashev

Outline

- Telescope Array observatory and TAx4 upgrade
- Energy Spectrum results
- Composition and hadronic interactions results
- Anisotropy results
- Interdisciplinary results
- Summary

Telescope Array Collaboration

R.U. Abbasi^{1,2}, M. Abe³, T. Abu-Zayyad^{1,2}, M. Allen², Y. Arai⁴, R. Arimura⁴, E. Barcikowski², J.W. Belz², D.R. Bergman², S.A. Blake², I. Buckland², R. Cady², B.G. Cheon⁵, J. Chiba⁶, M. Chikawa⁷, T. Fujii⁸, K. Fujisue⁷, K. Fujita⁴, R. Fujiwara⁴, M. Fukushima⁷, R. Fukushima⁴, G. Furlich², R. Gonzalez², W. Hanlon², M. Hayashi⁹, N. Hayashida¹⁰, K. Hibino¹⁰, R. Higuchi⁷, K. Honda¹¹, D. Ikeda¹⁰, T. Inadomi¹², N. Inoue³, T. Ishii¹¹, H. Ito¹³, D. Ivanov², H. Iwakura¹², A. Iwasaki⁴, H.M. Jeong¹⁴, S. Jeong¹⁴, C.C.H. Jui², K. Kadota¹⁵, F. Kakimoto¹⁰, O. Kalashev¹⁶, K. Kasahara¹⁷, S. Kasami¹⁸, H. Kawai¹⁹, S. Kawakami⁴, S. Kawana³, K. Kawata⁷, I. Kharuk¹⁶, E. Kido¹³, H.B. Kim⁵, J.H. Kim², J.H. Kim², M.H. Kim¹⁴, S.W. Kim¹⁴, Y. Kimura⁴, S. Kishigami⁴, Y. Kubota¹², S. Kurisu¹², V. Kuzmin¹⁶, M. Kuznetsov^{16,20}, Y.J. Kwon²¹, K.H. Lee¹⁴, B. Lubsandorzhiev¹⁶, J.P. Lundquist^{2,22}, K. Machida¹¹, H. Matsumiya⁴, T. Matsuyama⁴, J.N. Matthews², R. Mayta⁴, M. Minamino⁴, K. Mukai¹¹, I. Myers², S. Nagataki¹³, K. Nakai⁴, R. Nakamura¹², T. Nakamura²³, T. Nakamura¹², Y. Nakamura¹², A. Nakazawa¹², T. Nonaka⁷, H. Oda⁴, S. Ogio^{4,24}, M. Ohnishi⁷, H. Ohoka⁷, Y. Oku¹⁸ T. Okuda²⁵, Y. Omura⁴, M. Ono¹³, R. Onogi⁴, A. Oshima⁴, S. Ozawa²⁶, I.H. Park¹⁴, M. Potts², M.S. Pshirkov^{16,27}, J. Remington², D.C. Rodriguez², G.I. Rubtsov¹⁶, D. Ryu²⁸, H. Sagawa⁷, R. Sahara⁴, Y. Saito¹², N. Sakaki⁷, T. Sako⁷, N. Sakurai⁴, K. Sano¹², K. Sato⁴, T. Seki¹², K. Sekino⁷, P.D. Shah², Y. Shibasaki¹², F. Shibata¹¹, N. Shibata¹⁸, T. Shibata⁷, H. Shimodaira⁷, B.K. Shin²⁸, H.S. Shin⁷, D. Shinto¹⁸, J.D. Smith², P. Sokolsky², N. Sone¹², B.T. Stokes², T.A. Stroman², T. Suzawa³, Y. Takagi⁴, Y. Takahashi⁴, M. Takamura⁶, M. Takeda⁷, R. Takeishi⁷, A. Taketa²⁹, M. Takita⁷, Y. Tameda¹⁸, H. Tanaka⁴, K. Tanaka³⁰, M. Tanaka³¹, Y. Tanoue⁴, S.B. Thomas², G.B. Thomson², P. Tinyakov^{16,20}, I. Tkachev¹⁶, H. Tokuno³², T. Tomida¹², S. Troitsky¹⁶, R. Tsuda⁴, Y. Tsunesada^{4,24}, Y. Uchihori³³, S. Udo¹⁰, T. Uehama¹², F. Urban³⁴, T. Wong², K. Yada⁷, M. Yamamoto¹², K. Yamazaki¹⁰, J. Yang³⁵, K. Yashiro⁶, F. Yoshida¹⁸, Y. Yoshioka¹², Y. Zhezher^{7,16}, and Z. Zundel² ¹ Loyola University Chicago ² University of Utah ³ Saitama University ⁴ Osaka City University ⁵ Hanyang University ⁶ Tokyo University of Science ⁷ University of Tokyo (ICRR) ⁸ Kyoto University ⁹ Shinshu University ¹⁰ Kanagawa University ¹¹ University of Yamanashi ¹² Shinshu University (Inst. of Engineering) ¹³ RIKEN ¹⁴ Sungkyunkwan University ¹⁵ Tokyo City University ¹⁶ Institute for Nuclear Research of the Russian Academy of Sciences ¹⁷ Shibaura Institute of Technology ¹⁸ Osaka Electro-Communication University ¹⁹ Chiba University ²⁰ Université Libre de Bruxelles ²¹ Yonsei University ²²

University of Nova Gorica ²³ Kochi University ²⁴ Osaka City University (Nambu Yoichiro Institute) ²⁵ Ritsumeikan University ²⁶ National Inst. for Information and Communications Technology, Tokyo²⁷ Lomonosov Moscow State University²⁸ Ulsan National Institute of Science and Technology²⁹ University of Tokyo (Earthquake Inst.) ³⁰ Hiroshima City University ³¹ KEK ³² Tokyo Institute of Technology ³³ National Instit. for Quantum and Radiological Science and Technology ³⁴ CEICO, Institute of Physics, Czech Academy of Sciences ³⁵ Ewha Womans University

160 members, 35 institutes, 7 countries

Russia

ICRC 2021

Belgium

USA

Japan

Telescope Array: The largest cosmic ray observatory in the Northern Hemisphere

Science goals:

 Origin and properties of the ultra-high energy cosmic rays:

• spectrum, composition, anisotropy

Physics of HE hadronic interactions

Multi-messenger and interdisciplinary studies

- photons, neutrino, dark matter
- thunderstorms,TGFs
- meteoroids

Development of the next generation experiments

Map of the TA site

TALE

Located in TAMD site 10 FDs in the TALE station Elevation: 30°-57° (higher elevation than MD) Azimuthal: 114°

104 SD infill array identical to main TA SD Variable spacing up to 400m

TALE FD Installed in Nov. 2012 Operation since Sep. 2013

TALE SD completed Mar. 2018 Hybrid trigger: Sep. 2018

ICRC 2021

6

Goal: fourfold increase in size of TA SD array (up to 3000 km²). Triple statistics for E>20 EeV in 5 years.

Hybrid experiment: 2 FD stations, 12 telescopes are installed

257 SD scintillators outof 500 are installed andoperational since Nov.2019

22 Apr 2019 S. Thomas Dept. of Physics Univ. of U .

SD Event Reconstruction

$$\left(1 + \left[\frac{s}{1000 \mathrm{m}}\right]^2\right)^{-0.6}$$

Empirical formula used by AGASA

Event reconstruction

Energy spectrum

TA SD Energy Spectrum

ICRC 2021

TAx4 mono spectra

Combined Energy Spectrum

The "Instep" feature

Pierre Auger found a spectrum hardening in $10^{19} - 10^{19.5}$ eV range Combining TA SD, FD and HiRes data, we observe the *Instep* feature in the Northern Hemisphere at $10^{19.25\pm0.03}$ eV with a 5.3 σ significance

Dmitry Ivanov, this conference

ICRC 2021

E [eV]

A. Aab *et al.* (The Pierre Auger Collaboration) Phys. Rev. Lett. **125**, 121106 (2020)

Parameter	Auger	TA
γ_1	3.29 ± 0.02	3.23 ± 0.01
γ_2	2.51 ± 0.03	2.63 ± 0.02
γ_3	3.05 ± 0.05	2.92 ± 0.06
γ_4	5.1 ± 0.3	5.0 ± 0.4
$E_{\text{ankle}}/\text{EeV}$	5.0 ± 0.1	5.4 ± 0.1
$E_{\rm instep}/{\rm EeV}$	13 ± 1	18 ± 1
$E_{\rm cut}/{\rm EeV}$	46 ± 3	71 ± 3

Yoshiki Tsunesada, Auger+TA spectrum WG, this conference

Joint Auger + TA spectrum WG result

Yoshiki Tsunesada, this conference

Chemical composition and hadronic interactions

ICRC 202

TALE FD monocular XMAX

Tareq AbuZayyad, this conference

A break in the enlongation rate at energy 10^{17.2} eV

TA Collaboration ApJ 909 (2021)

TA and TALE hybrid XMAX

TALE hybrid

Keitaro Fujita, this conference

See also poster by Douglas Bergman on "Combined fit to spectrum and composition"

Elongation rate

Heungsu Shin, this conference

TA SD composition

Machine learning technique based on BDT and 16 composition-sensitive observables with 12 years of TA SD data

Yana Zhezher, this conference

TASD UHE photon limits

New p-y classifier based on neural network. Classifier uses full time-resolved signals from all triggered SD stations along with 16 composition-sensitive observables.

Oleg Kalashev, this conference Ivan Kharuk, this conference

/	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
ates	2	1	0
	6.72	5.14	3.09
	3428	5546	7875
<	2.0×10^{-3}	9.3×10^{-4}	3.9×10^{-4}

Rasha Abbasi, this conference

Anisotropy

ICRC 2021

CR clustering: Dipole update (12-yr)

Sky map of residual intensity between TA data and an isotropic distribution for E > 8.8 EeV (energy cut corresponds to E > 8 EeVused by Auger).

TA+Auger WG result: Peter Tinyakov, this conference see also Auger Highlight talk by Ralph Engel

ICRC 2021

TA I2-yr result : $r_{\alpha} \simeq 3.1\%$; $\phi_{\alpha} \simeq 134^{\circ}$ Auger 2017 result : $r_{\alpha} \simeq 4.7\%$; $\phi_{\alpha} \simeq 100^{\circ}$

Toshihiro Fujii, this conference

CR clustering: Hot spot update (12-yr)

Jihyun Kim, this conference.

ICRC 2021

CR clustering: Medium scales

35<= Distance (Mpc) < 100

Hint of excess in the direction of Perseus-Pisces supercluster

-1

Jihyun Kim, this conference.

Correlation with LSS: chemical composition

Upper limits on proton and iron fractions at 68% C.L. as functions of energy, derived from correlation with LSS Mikhail Kuznetsov, this conference For TA anisotropy summary see talk by Igor Tkachev, this conference For the TA+Auger WG on sources see report by Armando di Matteo see also Auger Highlight talk by Ralph Engel

Dmitry Ivanov, this conference

Interdisciplinary results

ICRC 2021

Observation of Terrestrial Gamma-Ray Flashes with TA SD

- Broadband Interferometer (INTF): Three 20-80 MHz flatplate
 - antennas
 - 2D high-resolution
 - reconstruction of lightning
- Fast Sferic Sensor (FA):
 - Detects electric field change Identifies substructure: initial breakdown pulses (IBPs)
- Clearly defined TGF onset during the flash's strongest initial breakdown pulse

Jackson Remington, this conference

Variation of Level-0 trigger rate during Thunderstorms

Level-0 trigger rate is monitored at 10 min resolution at each SD station.

Rasha Abbasi, this conference

Thunderstorm detected by NLDN changes the trigger rate.

The result may be interpreted by using EFIELD option of CORSIKA.

Intensity increase or deficit depends on electric field type (intracloud or cloud to ground) and thunderstorm polarity

Extension of TALE SD: TALE-infill

Ap. J., 865, 74(2018), arXiv: 1803.01288

ICRC 2021

Summary

- Telescope Array is UHECR Observatory in the Northern Hemisphere
- Energy spectrum is measured from 10^{15.5} to 10^{20.5} eV (5 decades)
 - New feature in the energy spectrum at $\sim 10^{19.3}$ eV
 - TA Low Energy Extension (TALE) energy spectrum indicated that second knee may result from Peters cycle $(10^{15.6} \text{eV} \rightarrow 10^{17.1} \text{eV})$
- TALE Xmax shows composition becoming heavier between first and second knee, consistent with Peters Cycle interpretation
- Between 10^{18.0} eV and 10^{19.1} eV TA hybrid data is compatible with predominantly light elements such as protons and helium
- Indications of anisotropy at highest energy
 - Hot spot from 12 years of data in the direction of Ursa Major $(3.2\sigma \text{ post trial})$
 - Hint of excess in the direction of Perseus Pisces $E > 10^{19.3} eV$
 - Correlation with LSS consistent with large fraction of protons
 - Declination dependence of the spectrum
- We need much more data at high energy end ->TAx4 in operation! ICRC 2021