

UNIVERSITÀ DEGLI STUDI DI TORINO

Damping of self-generated Alfvén waves in a partially ionized medium and the grammage of cosmic rays in the proximity of supernova remnants

Sarah Recchia

S.Recchia, D. Galli, L. Nava, M. Padovani, S. Gabici, A. Marcowith, V. Ptuskin and G. Morlino

Overview

- CRs escaping from SNRs
- excitation of Alfvén waves by resonant streaming instability
 - * suppression of diffusion coefficient in the source region
 - self-confinement
- damping of Alfvén waves
 - ion-neutral friction
 - turbulent damping
 - non-linear Landau damping
- CR grammage accumulated in the source region?
- Need a revision of the standard picture of CR Galactic propagation?

CR escape from SNRs: a challenge

- a self consistent theory of acceleration and escape of CRs is still missing
 - time-dependent problem
 - active role of CRs non linearity
 - broad range of spatial scales and propagation regimes involved
 - difficult with simulations

SOURCE

- strong B amplif. $\delta B \sim B_0$
- Bohm diffusion $\lambda \sim R_L$
- $P_{CR} > P_{B}$

<u>ISM</u>

- $\delta B \ll B_0$
- $\lambda \gg R_L$
- $P_{CR} \sim P_{B}$

CR resonant streaming instability

- CR density gradient
 - streaming CRs transfer momentum to waves
 - \star generate resonant waves $k \sim 1/R_L$
 - CRs scatter on self-generated waves, more effective diffusion
- Geometry of CR propagation
 - ID flux-tube
 - 3D isotropic

X

affects the CR gradient

Wave damping

Ion-neutral friction

- ionization fraction of the ISM
- * species of the colliding ion and neutral

Turbulent damping

- interaction with counter-propagating Alfvén waves
- per-existing Alfvénic turbulence
- Non-linear Landau damping
 - interaction of background thermal ions with the beat of two Interfering Alfvén waves

Focus on WIM and WNM, which have a total filling factor in the ISM ~ 50%

Wave damping

WIM and WNM: H ions and H, He neutrals

f = ionization fraction $\chi = He fraction$

ion-neutral damping turbulent damping (FG)

Escape radius and age

Half-time of the CR cloud

- cloud of initial radius R
- t_{1/2} is the time after which half of the CRs has escaped the initial cloud of radius R
- t_a is the age of a SNR of a given radius
- * the escape radius is taken such that $t_{1/2}(R) = t_a(R)$
- t_{1/2} > t_a: SNR expansion is faster that CR cloud expansion
- $\mathbf{t}_{1/2} < \mathbf{t}_a$: SNR expansion is slower that CR cloud expansion
- R_{esc}(E), T_{esc}(E) are typically decreasing functions of the particle energy

Suppression of D

- t~t_{1/2}: CR overdensity at small radii
- t >> t_{1/2}: solutions approaches test particle
- t_{1/2}: timescale over which waves can grow, CRs confined
- CR overdensity for t >> t_{1/2}
- important suppression of the CR diffusion coefficient
- R_{esc}(E) and T_{esc}(E) decrease with energy
- high energy particles are less confined and escape/diffuse faster

Results: escape time and radius

Strong dependence on the ISM phase due to ion-neutral damping

- f = ionization fraction
- $\chi = He fraction$

High energy particles are less confined...

Results: suppression of D

WNM: spectrum and D suppression at the shock and at 50pc from the SNR at different ages

Results: suppression of D

WIM: spectrum and D suppression at the shock and at 50pc from the SNR at different ages

Results: residence time and grammage

- damping processes, especially ion-neutral damping
 - * there is an effect of self-generated waves on the confinement time
 - but the resulting source grammage is found to be negligible compared to observations
 - region of ~ 100pc around the source

Conclusions

- the escape of CRs from sources is still an open issue
- CR propagation in the source region can be highly non-linear
 - Streaming instability and suppression of D
 - Limitations due to damping mechanisms
 - * dependence on the ISM phase in which the SNR is embedded
- CR source grammage
- possibility of producing secondaries in the source region
- implications for the observed CR spectrum
- interpretation of gamma-ray data...

We find a negligible source grammage in the WNM and WIM