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Importance of Domain Knowledge

« Utilization of domain knowledge is crucial to
advancing reconstruction performance

« Common deep learning architectures such as
CNNs can surpass standard methods|1], but do
not fully utilize available information

* |ncontrast, maximum-likelihood methods can
utilize all available information, but are limited
due to computational constraints

—> Develop method that combines strengths

Domain Knowledge in IceCube

DOM, Pulse series

e\

* Processes from neutrino interaction to measured
pulse series at each digital optical module (DOM) are
simulated and known to great detail [2]

* These processes utilize information such as:
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» Detector geometry

» Detector properties such as DOM efticiency

» Optical properties of detector medium
iIncluding dust layers in glacial ice

» Translational and rotational invariance of
the underlying physics

» Time Invariance

» Linear relationship of measured charge and
deposited energy of neutrino interaction

—> Reconstruction methods may benefit from
utilizing this information

Combining Maximum-Likelihood with Deep Learning

e Standard maximum-likelihood reconstructions in
ceCubel3] can utilize available information, but are

« Neural Networks (NN) are universal approximators that
excel at interpolating high-dimensional data

forced to simplifications due to computational complexity

« Common deep learning (DL) architectures fail at utilizing

all available information

— Combine strengths of maximum-likelihood and DL:

» Utilize generative model to approximate pulse
arrival time PDF and expected charge at each DOM

» Parameterize time PDF via mixture model of
asymmetric Gaussians|4]

» Directly include available domain knowledge in
network architecture, analogously to simulation

Model Performance

« Generative NN is able to model PDF (bottom)

NN is more interpretable: individual
components (such as z-dependence on the
right) can be visualized and cross-checked
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Mixture model components, charge
and over-dispersion per DOM
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Conclusions

* (Generative model to approximate high-dimensional PDF

* Generator NN able to utilize available information

* Improved reconstruction resolution of developed hybrid
method due to exploitation of symmetries and available
domain knowledge, without need tor simplifications
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Hybrid 80 % MLE* 80 % CNN 80 %
—— Hybrid50% —— MLE¥*50% —— CNN50 %
Hybrid 20 % MLE* 20 % CNN 20 %

*simplified, approximated likelihood
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