Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube

37th Internationa **Cosmic Ray Conference** 12-23 July 2021

Importance of Domain Knowledge

Department of Physics, TU Dortmund University, Germany

Mirco Hünnefeld* for the IceCube Collaboration

- Utilization of domain knowledge is crucial to advancing reconstruction performance
- Common deep learning architectures such as CNNs can surpass standard methods[1], but do not fully utilize available information
- In contrast, maximum-likelihood methods can utilize all available information, but are limited due to computational constraints
- Develop method that combines strengths

Domain Knowledge in IceCube

- Processes from neutrino interaction to measured pulse series at each digital optical module (DOM) are simulated and known to great detail [2]
- These processes utilize information such as:
 - Detector geometry
 - > Detector properties such as DOM efficiency
 - > Optical properties of detector medium including dust layers in glacial ice
 - > Translational and rotational invariance of the underlying physics
 - > Time invariance
 - > Linear relationship of measured charge and deposited energy of neutrino interaction
- → Reconstruction methods may benefit from utilizing this information

Combining Maximum-Likelihood with Deep Learning

- Standard maximum-likelihood reconstructions in IceCube[3] can utilize available information, but are forced to simplifications due to computational complexity
- Neural Networks (NN) are universal approximators that excel at interpolating high-dimensional data
- Common deep learning (DL) architectures fail at utilizing all available information
- → Combine strengths of maximum-likelihood and DL:
 - > Utilize generative model to approximate pulse arrival time PDF and expected charge at each DOM
 - > Parameterize time PDF via mixture model of asymmetric Gaussians[4]
 - > Directly include available domain knowledge in network architecture, analogously to simulation

Compute relative displacement vectors \vec{d}_i and angles δ_i , β_i

Translational/rotational invariance, detector geometry

Locally connected layer without weight sharing

Symmetry breaking ice properties

Mixture model components, charge and over-dispersion per DOM

 $\lambda_i \rightarrow \lambda_i'$ Apply shift to

expected charge

Shift PDF relative to interaction time

Linear scaling, DOM efficiency

Time invariance

Model Performance

- Generative NN is able to model PDF (bottom)
- NN is more interpretable: individual components (such as z-dependence on the right) can be visualized and cross-checked

Conclusions

Convolutional layers

with weight sharing

Shared DOM

Properties

- Generative model to approximate high-dimensional PDF
- Generator NN able to utilize available information
- Improved reconstruction resolution of developed hybrid method due to exploitation of symmetries and available domain knowledge, without need for simplifications

[3] IceCube Collaboration, M. Aartsen et al. JINST 9 (2014) P03009. [1] IceCube Collaboration, R. Abbasi et al. arXiv:2101.11589 [hep-ex]. [2] IceCube Collaboration, M. Aartsen et al. JCAP 10 (2019) 048.

[4] T. Kato, S. Omachi, and H. Aso <u>Lecture Notes in Computer Science</u> (2002) 405-413.

*Presenter:

Mirco Hünnefeld, mirco.huennefeld@tu-dortmund.de ICRC 2021, Berlin, Germany, PoS ICRC 2021 (395)

