# Antiproton production from cosmic-ray interactions and its compatibility with AMS-02 data

# **Motivation and Overview**

Recent cosmic-ray (CR) studies have claimed the possibility of an excess of antiproton data over the predicted flux at  $\sim 10$  GeV, which can be the signature of dark matter. Nevertheless, this excess is subject to many uncertainties related to the evaluation of the antiproton spectrum produced from spallation interactions of CRs.

## **Method and novelty**

We perform combined analyses of the secondary CRs B, Be and Li and antiprotons ( $\bar{p}$ ). The spectra of these CRs is evaluated with the DRAGON2 code (Ref. [1]), assuming a diffusion-reacceleration model.

Propagation parameters are inferred from a fit to experimental data by means of the Markov-Chain Monte Carlo (MCMC) procedure based in Ref. [2].

Main novelty: We incorporate scale factors to renormalize the cross sections parametrizations of B, Be and Li production ( $S_B$ ,  $S_{Be}$ ,  $S_{Li}$ ), allowing us to adjust the grammage to improve the predicted  $\bar{p}/p$  ratio.

The MCMC routine minimizes likelihood from the fit of:

- $\bar{\mathbf{p}}/\mathbf{p}$ ,  $\mathbf{B}/\mathbf{C}$ ,  $\mathbf{B}/\mathbf{O}$ ,  $\mathbf{Be}/\mathbf{C}$ ,  $\mathbf{Be}/\mathbf{O}$  flux ratios, to constrain the diffusion coefficient ( $D_0/H$ ,  $\eta$ ,  $\delta$ ) and the Alfvèn speed  $V_A$ .
- Be/B, Li/B, Li/Be flux ratios (which mainly allow us setting the values of the scaling parameters, see Ref. [3])
- $^{10}$ Be/Be and  $^{10}$ Be/ $^{9}$ Be, to constrain the halo height, H.

# **Propagation parameters and relevant CR spectra**







#### Conclusions

We show that the energy dependence of the  $\bar{p}/p$  spectrum is well reproduced assuming a pure secondary origin of antiprotons and that the discrepancy found is plausibly explained (within the 1 $\sigma$  uncertainties reported by AMS-02) by a rescaling of the cross sections of  $\bar{p}$  production. Therefore, we conclude that taking into account all the sources of uncertainties in the evaluation of the secondary antiprotons produced from CR interactions allows us to explain the  $\bar{p}/p$  spectrum without any need of extra sources, as dark matter annihilation in the Galaxy.

# Pedro de la Torre Luque pedro.delatorreluque@fysik.su.se

The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova SE-10691 Stockholm, Sweden

# **Main result: Predicted** $\bar{p}/p$ ratio.

The energy dependence predicted by our model is in very good agreement with that reported by AMS-02 above ~ 3 GeV, without any need to invoke extra sources **producing antiprotons**. We employ  $\bar{p}$  production cross sections derived in Ref. [4] for this evaluation.

Residuals (model-data/data) are constant above ~ 3 GeV and at the level of 10%. In fact, this discrepancy does not resemble the typical bump-like structure that one would expect from possible extra sources of antiprotons.



The same prediction but scaled by 10% is shown as a dashed line. This **discrepancy can be plausibly explained by the** uncertainties related to the cross sections of antiproton **production**, estimated to be of the level of  $\sim 20\%$  (see Ref. [5]).

## References

**Figure:** Relevant CR spectra obtained from the combined analysis and compared to experimental data. Error bands represent the  $2\sigma$  statistical uncertainty in the determination of the propagation parameters and the lower-left panel also shows solar modulation uncertainties. The injection parameters are tuned to reproduce AMS-02 data on primary CRs at each step of the MCMC procedure.

| Propagation parameters                            |                 |                  |                 |
|---------------------------------------------------|-----------------|------------------|-----------------|
| $D_0$ (4GV) [10 <sup>28</sup> cm <sup>2</sup> /s] | $V_A$ [km/s]    | η                | δ               |
| $4.79 \pm 0.1$                                    | $0.28 \pm 1.25$ | $-1.57 \pm 0.08$ | $0.49 \pm 0.01$ |
| [4.59, 5.01]                                      | [0., 2.8]       | [-1.75, -1.39]   | [0.46, 0.51]    |

**Table:** Best-fit values obtained in the combined analysis. The  $\pm$  error given corresponds to the  $1\sigma$ uncertainty. The  $2\sigma$  uncertainty range is given for every parameter within square brackets.

[1] C. Evoli et al. JCAP02, 015 (2017), arXiv:1607.07886 [2] P. De la Torre Luque et al. Accepted in JCAP (2021), arXiv:2102.13238 [3] P. De la Torre Luque et al. JCAP03, 099 (2021), arXiv:2101.01 [4] M. W. Winkler. JCAP02, 048 (2017), arXiv:1701.04866 [5] M. Korsmeier et al. PRD 97, 103019 (2018), arXiv:1802.03030

