Cherenkov Telescope Array: the World's largest VHE gamma-ray observatory

Roberta Zanin – CTAO Project Scientist <u>Roberta.Zanin@cta-observatory.org</u> on behalf of the CTA Observatory, CTA Consortium & the CTA LST Collaboration

37th ICRC – July 21, 2021

Outline

- Introduction
 - Why CTA?
 - The CTA design
- Few representative science cases
- First results from LST-1: the first CTA telescope under commission

Imaging Atmospheric Cherenkov Telescopes

Real astronomy

A successful technique that has joined the astronomy world with precision measurements that provide insights to the physical mechanisms at the basis of the VHE emission

- more than 200 detected sources
- sky maps with 5' resolution
- light curves on all scales from minutes to years
- ~10 different emitting source classes

A counterpart for a UHE neutrino?

of an astrophysical neutrino source op 115, 146, 8, 147

13 JULY 2008

contraction of the

MAAAS

indication for a joint photon- $\boldsymbol{\nu}$ emission from a blazar

- TXS 0506+056 (IceCube Coll. Science 2018)
 - a 6 month-long gamma-ray flare with 2 UHE neutrinos in coincidence at 3σ level
 - a 3.5σ neutrino flare during 2014-2015 with no electromagnetic counterparts
 - a blazar sequence outlier (Padovani+2019)

GRBs as VHE gamma-ray sources

GRB 190114C (MAGIC Coll., Nature, 2020)

- o long GRB
- o z = 0.42
- o for 40' after T0 +60 s
- o 0.2 -1 TeV

• **GRB 180720B** (H.E.S.S. Coll., Nature, 2020)

- long GRB
- o z = 0.65
- \circ after T₀ + 10h

GRB 190829A (H.E.S.S. Coll., Science)

- o long GRB
- o z = 0.078
- \circ for 3 nights after T₀ + 4,3h
- o 0.18-3.3 TeV

GRB 160821B (MAGIC Coll. ApjL 2021)

- o short GRB
- o z =0.162
- o 3σ @ E>500 GeV
- \circ for 4h after T₀+24s

GRB 201015A (PoS ID 305, Y.Suda)

- o long GRB
- o z=0.42
- \circ for 3,4 h after T₀+40s
- \circ 3.5 σ above 50 GeV

GRB 201216C (PoS ID 395, S.Fukami)

- o long GRB
- o z=1.1
- \circ for 20' after T₀+56s
- ο 6σ E<**100 GeV**

Electromagnetic counterparts to GWs

- GW 170817 (LIGO-VIRGO PhyRvL 2017) ۲
 - **NS-NS** merger Ο
 - Associated to GRB170817A Ο
 - z=0.0098 Ο
 - no detection by LAT on Ο time scales larger than hr (Fermi-LAT Coll. ApJ 2018)
 - no detection by H.E.S.S. on 0 the spot just 5.3 hr after the GW event (H.E.S.S. Coll., ApJ, 2017)

- GW200105 GW200115 (LIGO-VIRGO-KANGRA ApjL 2021)
 - **NS-BH** merger Ο
 - no electromagnetic Ο counterpart (too large BH) $_{7}$

Hunt for extreme accelerators in our Galaxy

- UHE photons up to 1.4 PeV from 12 Galactic sources (LHAASO Coll. Nature 2021)
- 4 sources detected above 100 TeV by the Tibet ASγ (*Tibet ASγ Coll. ID #334, ID #1430, ID #1421*)
- HAWC published Galactic Plane map above 56 TeV (HAWC Coll. 2018)

Tibet AS γColl. 2021)

More to come

HESS Point Source

Gamma-ray Luminosity 10³⁴ erg/s

More to come

HESS Point Source

Gamma-ray Luminosity 10³⁴ erg/s

HESS Extended Source (0.4°)

More to come

HESS Point Source

Gamma-ray Luminosity 10³⁴ erg/s

HAWC Point Source

HESS Extended Source (0.4°)

Design drivers for next generation IACT facility

HESS Point Source

Gamma-ray Luminosity 10³⁴ erg/s

HAWC Point Source

HESS Extended Source (0.4°)

Design drivers for next generation IACT facility

Design drivers for next generation IACT facility

ARCMINUTE ANGULAR RESOLUTION

> 10% ENERGY RESOLUTION

> > **HESS Point Source**

Gamma-ray Luminosity 10³⁴ erg/s

HAWC Point Source

HESS Extended Source (0.4°)

Energy Threshold ~ 80 GeV

Energy Threshold ~ 20 GeV

Energy Threshold ~ 80 GeV

Energy Threshold ~ 20 GeV

EXTERNAL ALERTS

The Cherenkov Telescope Array Observatory

3 telescope designs

Array design

Full sky coverage

CTA North ORM La Palma, Spain

CTA South ESO, Chile

22

The two initial CTAO arrays: the Alpha Configuration

CTAO Northern Array

- 4 LSTs + 9 MSTs
- 0,25 km² footprint
- focus on extra-Galactic science

CTAO Southern Array

- 14 MSTs + 37 SSTs
- 3 km² footprint
- focus on Galactic science

The two initial CTAO arrays: the Alpha Configuration

CTAO Northern Array

- 4 LSTs + 9 MSTs
- 0,25 km² footprint
- focus on extra-Galactic science

CTAO Southern Array

- 14 MSTs + 37 SSTs
- 3 km² footprint
- focus on Galactic science

Atmospheric characterization devices are key to keep the systematic uncertainties within requirements

 The impact of atmospheric conditions is larger close to threshold ID #773 M.Pecimotika

- Proposal driven observatory: standard proposals & Key Science Projects
- Proposals evaluated on scientific merits by a Time Allocation Committee

Science Alert Generator: ID #773 A.Bulgarelli Short-term Detection Methods: #156 A.Di Piano ACADA: #227 A.Costa

CTA Science Program

GW - GRB - UHE ν follow-up observations

GW - GRB - UHE ν follow-up observations

GW - GRB - UHE ν follow-up observations

1047

10-13 10-11 10-9

10-7

ID #329 O.Sergijenko

Density [Mpc⁻³]

10 fo

• observational parameters

prospects for detection are very promising!

CTA will have the opportunity to shed light on the physics behind the most extreme accelerators in the Universe

0.0

GW - GRB - UHE $\boldsymbol{\nu}$ follow-up observations

- Observational strategies: key element for the success
 - Optimal pointing pattern to cover the largest total alert uncertainty region (10-100 deg²) (*Patricelli+2018, Bartos+2019*)
 - o **Optimal pointing cadence:** exposure time selected to achieve 5σ detection
 - Site coordination to prioritize best observational conditions
 (sky brightness, zenith angle, sky quality) to guarantee lowest energy threshold
 - Phenomenological considerations: galaxy density for GW events
 - Divergent array pointing mode to increase the FoV

Census of VHE sky: CTA surveys

Galactic Plane Survey

Source population studies

The strength: precision-study capabilities origin of Galactic Cosmic Rays

Only the synergy between these instruments and IACTs, specifically CTAO, and neutrino experiments can provide a univocal answer to this question

The strength: precision-study capabilities origin of Galactic Cosmic Rays

Test case: G106.3+2.7

Is the emission seen by HAWC/LHAASO/Tibet ASγ of hadronic or leptonic origin?

The strength: precision-study capabilities origin of Galactic Cosmic Rays

Test case: G106.3+2.7

Is the emission seen by HAWC/LHAASO/Tibet Array of hadronic or leptonic origin?

Galactic Latitude [°

CTA will be able to detect the spectral cut-off at ~50 TeV in 50 hr at more than 5σ

not enough to disentangle between hadronic or leptonic origin

morphological studies will provide important clues given the CTA's excellent angular resolution

ID #1140 G.Verna

[cm⁻2¹8.0]

0.6

0.2

0.0

25

20

15

10

The strength: precision-study capabilities constraining γ-ray propagation

ALPs

CTA can measure extended halos as well as detect new spectral components at low energies: all smoking guns for measurement of IGMF strength

ID #497 J.Vovk

simulated ALP signature

Other science cases

This talk does not include a comprehensive overview of all CTA science cases

• Search for new classes of Galactic gamma-ray emitters

Galactic transients: ID #224 A.López-Oramas

• Indirect measurements of the EBL (CTA Consortium 2020)

Galactic transients: ID #497 J.Vovk

• Searches for dark matter (CTA Consortium 2020)

In the GC: ID #316 C.Eckner In Galaxy Clusters: ID288 # J.Pérez-Romero In dark sub-halos: ID #544 J.Coronado-Blázquez

• Searches for VHE gamma-ray pulsars

and much more in "Science with CTA" https://www.worldscientific.com/worldscibooks/10.1142/10986

LST-1 already performing science

Camera Calibration: ID#531 Y. Kobayashi Camera Commissioning: ID#509 T.Saito Pointing System: ID#392 L.Foffano

Status report: ID #1247 D.Mazin

LST-1 already performing science

Always starting from the Crab as reference source to verify the scientific performance

&

ID #560 Y.Ohtani

Cross calibration LST-1 with MAGIC

Pulsar: energy threshold ~50 GeV

combined LST-1 – MAGIC analysis

LST-1 already performing science

First follow-up of GRBs and neutrino golden events

- detected by MAGIC pointing in < 1'
 - z = 1.1

۲

• LST-1 pointed at it 22 hr after the GRB event

ID #835 A. Carosi

CTAO Construction phase is about to start

- CTAO construction scope is agreed
- The construction phase will start with the establishment of the final legal entity: CTAO European Research Infrastructure Consortium (ERIC)

The Board of Governmental Representatives Approves the CTAO's Cost Book and Scientific & Technical Description

- by Summer/End 2022
- last about 5 yr
- Early science operations foreseen during the construction phase

Already looking into potential future development programmes for CTAO

- Stellar intensity interferometry capabilities (Dravins+2014, Colin+2018)
 - PoC observations by MAGIC and VERITAS show the great scientific potential (*ID #803, ID #710, ID #693*)
- Schwarzschild-Couder Telescope (SCT): another design for a future CTAO MST
 - o factor 1.5-2 better angular resolution
 - o 25% better sensitivity
 - key technologies demonstrated by prototype

Camera Design: ID #1027 L.Taylor Optical System: ID #474 D.Ribeiro Crab detection: ID #830 B.Mode

CTA: a phase transition in VHE γ -ray astronomy

In-depth understanding of known objects and their mechanisms

Expected discoveries of new object classes

The fun part: Things we haven't thought of

Thank you

CTA Consortium

25 Countries

Effort started in 2006

over 150 Institutes

over 1000 Scientists

CTA LST Collaboration

