H α polarimetry as a powerful diagnostics of cosmic-ray modified shock

Cf.) Shimoda \& Laming 2019a, MNRAS, 485 Shimoda \& Laming 2019b, MNRAS, 489

Jiro Shimoda ${ }^{1}$

J. Martin Laming ${ }^{2}$

1. Nagoya Univ.; 2. Naval Research Lab.

Summary

\square Cosmic-Ray Modified Shocks (CRMSs) are one of an essential prediction of the diffusive shock acceleration.
\square We must examine a velocity modification of plasma with ~ 10 \% level around the SNR shock.
\square The polarization direction of $\mathrm{H} \alpha$ responds sensitively whether the shock is modified.

Supernova Remnant (SNR)

γ-ray: electron or proton?

X-ray: $\sim \mathrm{TeV}$ CR electrons Supernova ejecta

Ha: useful tracer of shock condition \& physics.

SNR 0509-67.5 (Chandra \& HST)
Blue: $1.5-7.0 \mathrm{keV}$
Green: $0.2-1.5 \mathrm{keV}$ Red: $\mathrm{H} \alpha$

SNR shock is considered as the best candidate of CR origin.

Shock Structure with CRs

no CR

pobrotons 1 a
background plasha

Shock Structure with CRs

CRs excite plasma waves and/or heat up the background plasma.

If CRs are more

 efficiently accelerated, ...
heated/turbulent

shock ($z=0$)

Shock Structure with CRs

no CR

Velocity \uparrow
CR pressure becomes
 considerably large.
The upstream plasma is decelerated.

$$
p=1+3 u_{2} /\left(u_{0}-u_{2}\right)
$$

The spectrum is determined by CRs themselves!
shock ($z=0$)

Shock Structure with CRs

 never been observed in SNR.\square The "heating" precursor can also be formed by photoionization (e.g. Ghavamian+00, Medina+14).
\square The "velocity modification" would be firm evidence of the modification of shocks.

Cosmic-Ray Modified Shock (CRMS)

Terasawa 2006
~20 \% of shock energy (flux) converted to non-thermal particles

- In situ. observation Solar wind
$\mathrm{V}_{\mathrm{sh}} \sim 100 \mathrm{~km} / \mathrm{s}$
$\mathrm{E}_{\mathrm{CR}} \sim 10 \mathrm{keV}-\mathrm{MeV}$
$B \quad \sim 10 \mu G\left(M_{A} \sim 5\right)$
Age ~day
Young SNR
$\mathrm{V}_{\mathrm{sh}}>1000 \mathrm{~km} / \mathrm{s}$
$\mathrm{E}_{\mathrm{CR}} \sim 1 \mathrm{GeV}-3 \mathrm{PeV}$?
B $\sim 1-100 \mu \mathrm{G}$?
($\mathrm{M}_{\mathrm{A}} \sim 1-100$?)
Age $\sim 100-1000 \mathrm{yr}$.

Cosmic-Ray Modified Shock (CRMS)

Cosmic-Ray Modified Shock (CRMS)

We must examine such modification of plasma located at a distance of kpc scale. Challenging!

Supernova Remnant (SNR)

γ-ray: electron or proton?

X-ray:~TeV CR electrons Supernova ejecta

Ha: useful tracer of shock condition \& physics.

H α emissions reflect a plasma condition around the shock (e.g. Raymond 91 for review). Red: H α best candidate of CR origin.

H α emission from upstream

H α emission from upstream

H α emission from upstream

Ha emission from upstream

$\mathrm{H}_{\mathrm{H}} \quad$ noCR Velocity -

H passes through the shock front $\stackrel{\downarrow}{\mathbf{H}}+\mathrm{p} / \mathrm{e} \rightarrow \underline{\mathrm{H}^{*}}+\mathrm{p} / \mathrm{e}$ emits Ly β
p / e suffers the shock compression

Ha emission from upstream

$\mathrm{H}_{\mathrm{H}} \quad$ no CR Velocity \uparrow

H passes through the shock front $\stackrel{\downarrow}{\mathbf{H}}+\mathrm{p} / \mathrm{e} \rightarrow \underline{\mathrm{H}^{*}+\mathrm{p} / \mathrm{e}}$ \uparrow emits Ly β
p / e suffers the shock compression

H α emission from upstream

H passes through the shock front $\stackrel{\downarrow}{\mathbf{H}}+\mathrm{p} / \mathrm{e} \rightarrow \underline{\mathrm{H}^{*}+\mathrm{p} / \mathrm{e}}$ \uparrow emits Ly β
p / e suffers the shock compression

H α emission from upstream

Velocity \uparrow

shock (z=0)

H α emission from upstream

If we observe from the y-direction, the polarization angle is ...

shock ($z=0$)

Polarization angle for $\mathrm{Ly} \beta \rightarrow \mathrm{H} \alpha$

H α emission from upstream

Velocity \uparrow

shock (z=0)

H α emission from upstream

The upstream $\mathrm{H} \alpha$ comes from:

1. Raman scattering resulting in Ly β to $\mathrm{H} \alpha$
2. Collisional excitation in the upstream region.
shock ($z=0$)

H α emission from upstream

H α emission from upstream

H α emission from upstream

H passes through the shock front $\stackrel{\downarrow}{\mathbf{H}}+\mathrm{p} / \mathrm{e} \rightarrow \underline{\mathrm{H}^{*}+\mathrm{p} / \mathrm{e}}$ emits Ly β
p/e suffers the shock compression
fully ionized shock ($z=0$)

H α emission from upstream

H α emission from upstream

Collisional excitation in the heating precursor can also yield Ly β perpendicularly to the modification.
fully ionized
shock ($z=0$)

Polarization angle for $\mathrm{Ly} \beta \rightarrow \mathrm{H} \alpha$

H α emission from upstream

Polarization direction (definition of Stokes Q):
no modification \rightarrow parallel $\rightarrow Q<0$
Modified \rightarrow perpendicular $\rightarrow Q>0$

H α emission from upstream

R Radiation line transfer \& atomic population with polarized light \rightarrow quite complex!
\square We make simplifications:

1. Omitting the polarization in atomic population calculations (SJ \& Laming 19a). Stokes I is OK.
2. Completely unpolarized Ly β is supposed.
3. For the Stokes Q, the $3 \mathrm{p}_{3 / 2}$ state only results from the radiative excitation in the upstream region.

See, SJ \& Laming 19b for details

Model set up for the shock

precursor front $\left(z=z_{\text {pre }}\right) \quad$ shock/subshock $(z=0)$
Downstream value is given by usual Rankine-Hugoniot relations with $T_{\mathrm{e}}=0.1 T_{\mathrm{p}}$ (incomplete ion-electron temperature equilibrium).

Model set up for the shock

We solve 3 cases:

1. No precursor
2. electron heating precursor, but no modification
3. electron heating precursor with decelerated protons, but no proton heating (Cosmic-Ray Modified Shock)

precursor front $\left(z=z_{\text {pre }}\right) \quad$ shock/subshock $(z=0)$
Downstream value is given by usual Rankine-Hugoniot relations with $T_{\mathrm{e}}=0.1 T_{\mathrm{p}}$ (incomplete ion-electron temperature equilibrium).

Line Transfer Model

Parameters:

(1) Shock velocity $V_{\text {sh }}$
(2) Upstream number density $n_{\text {tot }, 0}$
(3) proton fraction χ_{0}
(4) Upstream electron temp
(5) Downstream electron temp $T_{\mathrm{e}}=\beta T_{\text {down }}$

Pure hydrogen plasma.
We solve the excited states up to 4 f .
(SJ \& Laming 19a)

Results: Ionization Structure of H

Results: Radiative vs. Collisional

Results: Polarization of $\mathrm{H} \alpha$

The sign of degree indicates the polarization angle (Stokes Q).

Results: Polarization of $\mathrm{H} \alpha$

Polarization degree

Surface brightness

The polarization direction can respond whether the shock is modified.

The degree of a few per cent is measurable (Sparks+ 15).

Discovery of polarized $\mathrm{H} \alpha$ emission

@ bright filament of SN 1006 (Sparks+ 15)

$>$ Linear Polarization
$>$ Polarization angle: perpendicular to the shock
$>$ Degree: 2.0 ± 0.4 \%

Discovery of polarized $\mathrm{H} \alpha$ emission

@ bright filament of SN 1006 (Sparks+ 15) 6000 5000
\checkmark Our calculation is consistent with the observation.
\checkmark Polarized H α has been reported by Sparks +15 , but this is not spatially resolved...
\checkmark Further observations of $\mathrm{H} \alpha$ polarimetry will bring new insights to particle acceleration!

	$>$ Linear Polarization
	$>$
	Polarization angle:
	perpendicular to the shock

Polarization of $\mathrm{H} \alpha$ vs others

Polarization degree

$H \beta / H \alpha$

Surface brightness

Only polarization can catch the velocity modification!

Summary

\square Cosmic-Ray Modified Shocks (CRMSs) are one of essential prediction of the diffusive shock acceleration.
\square We must examine a velocity modification of plasma with ~ 10 \% level around the SNR shock.
\square The polarization direction of $\mathrm{H} \alpha$ responds sensitively whether the shock is modified.

SN 1006

SN 1006

$$
\begin{aligned}
L_{\pi^{0}} & \sim 0.1 \frac{\eta \rho V_{\mathrm{sh}}^{2}}{2} R^{3} n \sigma c \\
& \sim 10^{33} \eta \mathrm{erg} / \mathrm{s} \times\left(\frac{R}{3 \mathrm{pc}}\right)^{3}\left(\frac{V_{\mathrm{sh}}}{0.01 c}\right)^{2}\left(\frac{n}{0.3 \mathrm{~cm}^{-3}}\right)^{2}
\end{aligned}
$$

Balmer Line Emissions from Collisionless Shocks

Winkler+14
Supernova Remnants (SNRs)

Figures from Morlino+15
Pulsar Wind Nebulae

Balmer line emissions (especially $\mathrm{H} \alpha$) are ubiquitously seen in collisionless shocks propagating into the ISM.

Balmer Line Emissions from Collisionless Shocks

Balmer Line Emissions from Collisionless Shocks

\checkmark Emission Mechanism (e.g. Chevalier+80) upstream downstream • The collisionless shock is
 formed by the interaction between charged particles and plasma waves.

- The neutral particles (e.g. hydrogen atoms) are not affected.

SNR shock
Charged particles \rightarrow shock heating
Hydrogen atoms \rightarrow no dissipation

Balmer Line Emissions from Collisionless Shocks

\checkmark Emission Mechanism (e.g. Chevalier+80)

SNR shock
Charged particles \rightarrow shock heating Hydrogen atoms \rightarrow no dissipation

- Collisional Excitation

$$
\mathrm{H}+\mathrm{p}(\text { or } \mathrm{e}) \rightarrow \underline{\mathrm{H}}^{*}+\mathrm{p}(\text { or } \mathrm{e})
$$ Emits "narrow" comp.

\square Charge Transfer
$\mathrm{H}+\mathrm{p} \rightarrow \mathrm{p}+\underline{\mathrm{H}^{*}}$
Emits "broad" comp.
The "broad" component reflects the downstream temperature of protons.

