## HI absorption and the Galactic Centre Excess

Martin Pohl, Phaedra Coleman, Chris Gordon, and Oscar Macias

- The Fermi-LAT gamma-ray data indicate an Galactic center excess (GCE) of gamma rays which is peaked at around 1 GeV.
- The two main explanations are either a unresolved population of millisecond pulsars or self annihilating dark matter.
- It is important that the diffuse galactic background is adequately accounted for.
- This requires an accurate estimate of how the HI gas is distributed in our galaxy.
- We present an advanced model of atomic gas in the Galaxy and apply it to the analysis of gamma-ray emission from the Galactic center.
- We account for both line and continuum emission in the radiation transport, which allows the modelling of negative line intensity and traces gas in both emission and absorption.

## Continuum emission model based on CHIPASS and Stockert data sets

- Continuum data fitted with an axisymmetric model. See proceedings for more details.
- Top: Cross section at a distance of 8 kpc from the solar system.
- Bottom: Profile for (*I*,*b*)=(0°, 0°).



Distance (kpc)

## HI spectrum

- Comparison of the HI spectrum observed toward the Galactic Center (top panel).
- The absorption feature could be caused by cold gas immediately in front of the Galactic Center, whereas most of the gas clouds have temperatures of a few hundred Kelvin.
- A line of sight with a high intensity peak (bottom panel) needs larger  $T_{\rm exc}$ .



## Fermi-LAT Likelihood

- Dashed line is for old method which didn't account for continuum emission.
- As can be seen, a wide range of excitation temperatures fit the Fermi-LAT data better once continuum emission is accounted for.
- Provisional results still find a significant Galactic Center Excess but with a slightly reduced significance.
- The unresolved MSP model still provides a better fit to the Galactic Center Excess in comparison to the self-annihilating dark matter model.

