
neutrinos

Detecting neutrinos:

Reconstructing Neutrino Energy using CNNs for GeV Scale IceCube Events

Jessie Micallef for the IceCube Collaboration Michigan State University, micall12@msu.edu

Challenge: IceCube's Low Energy Events

- CNN successfully implemented in IceCube at TeV scale [2]
- · Only a few DOMs hit per event for GeV scale events
- Example of 12 GeV event in IceCube
 - Colored dots shows time DOM was hit - Size of dots shows amount of charge DOM recorded

Why do we care? \rightarrow Interesting physics at the GeV scale like neutrino oscillations!

Goal: Apply convolutional neural network (CNN) on on low energy IceCube events (5-200 GeV) to improve the reconstruction speed and resolution of the neutrino's energy.

Focusing CNN on Low Energy Events

DeepCore, the densely instrumented center of IceCube, is already optimized for low energies [1]

- Focus CNN on DeepCore strings & nearby IceCube strings
- · Use hits near DeepCore -400event trigger: time window [-500, 4000] ns

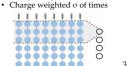
400

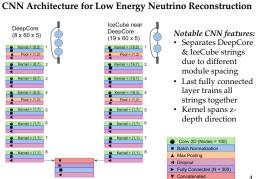
200

-200

-500 -250

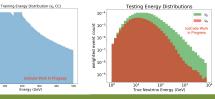
250 500


0


X (m)

- Time of first hit
- · Time of last hit
- · Charge weighted mean of times

Invuts: 5 variables that summarize



Testing Samples

 \rightarrow Distribution expected to be similar to data → Atmospheric flux & oscillation

model weights applied \rightarrow Testing on ν_{μ} and ν_{e} CC

Reconstruction Speed Improvement

✓ Reconstructs 10⁵ times faster!

200 300 Energy (GeV

12500

10000

✓ Will take hours instead of weeks to reconstruct high statistics atmospheric neutrino sample

Method	Average Time per Event (seconds)	Events per Day per Single Core
CNN on GPU	0.0077	11,000,000
CNN on CPU	0.27	320,000
Likelihood-Based	40	2,100

CNN Resolution Performance Comparison

200-

\$ 175

≥ 150

125

u 100

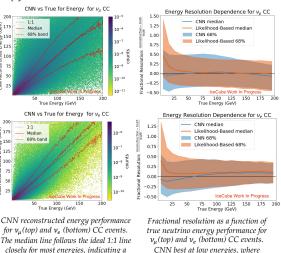
75

50

200

175

> 150


S 125

100

Λ

5

- ✓ Reconstruction at low energy < 50 GeV shows improvements
- ✓ Resolution at > 50 GeV is comparable to current likelihood-based method [3], both in median and 68% containment

CNN best at low energies, where majority of data sample is expected. 7

Conclusion and Future work

good average reconstruction.

- CNN significantly accelerates processing time while maintaining or improving the reconstruction performance
- CNN shows promising robustness against systematics
- Other applications for CNN in progress [Shiqi Yu's poster]

References & Acknowledgments

- [1] IceCube Collaboration, M. G. Aartsen et al. JINST 12 no. 03, (2017) P03012.
- [2] IceCube Collaboration. PoS ICRC2017 (2017) 1057.
- [3] M. Leuermann. PhD RWTH Aachen University. 2018. DOI 10.18154/RWTH-2018-231554

"This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1848739 and NSF-1913607. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.