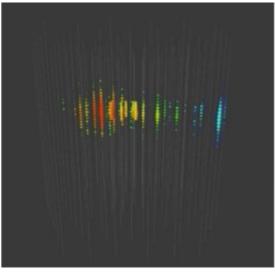

# Reconstructing Neutrino Energy using CNNs for GeV Scale IceCube Events



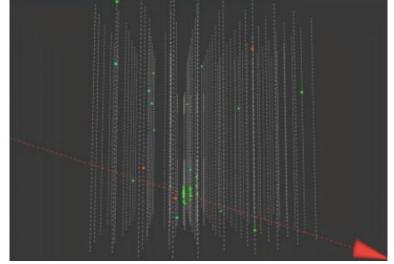
Jessie Micallef For the IceCube Collaboration Michigan State University <u>micall12@msu.edu</u>

Reconstructing Neutrino Energy using CNNs - J. Micallef

### IceCube Neutrino Observatory



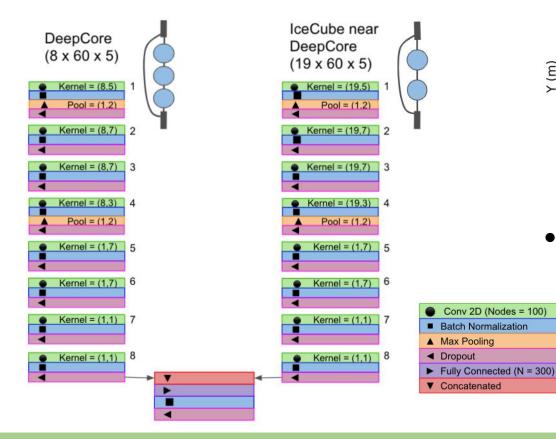

#### Reconstructing Neutrino Energy using CNNs - J. Micallef

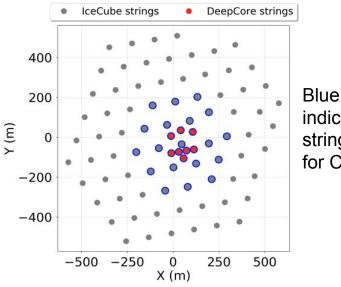

## Event Signatures in IceCube

### High energy $v_{\mu}$ CC event (71






### Low energy $v_{\mu}$ CC event (12 GeV)



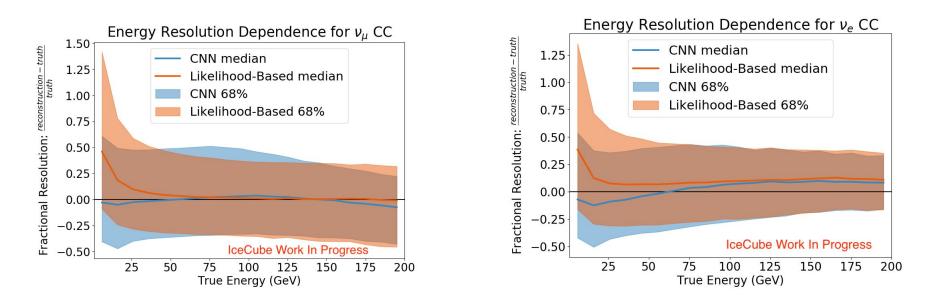

- Less light produced per event means fewer optical modules record pulses
- Must leverage DeepCore array
- Need to optimize neural network specifically for these events

Reconstructing Neutrino Energy using CNNs - J. Micallef

## GeV-Scale CNN Architecture






Blue circles indicate strings used for CNN

- Inputs: 5 variables that summarize all pulses hitting optical module
  - Sum of charge
  - Time of first hit
  - Time of last hit
  - Charge weighted mean of times
  - $\circ$  Charge weighted  $\sigma$  of times

Reconstructing Neutrino Energy using CNNs - J. Micallef

# CNN Energy Performance Testing on $v_{\mu}$ CC & $v_{e}$ CC

- CNN does well at lowest energies
- Comparable to current likelihood-based reconstruction



#### Reconstructing Neutrino Energy using CNNs - J. Micallef

### **CNN Significantly Reduces Reconstruction Time**

- ✓  $10^5$  runtime improvement possible in serial!
- ✓ In parallel, CNN reconstruction will take a day (vs weeks for likelihood-based)

|                                 | Events per day per single core |
|---------------------------------|--------------------------------|
| CNN on GPU                      | 11,000,000                     |
| CNN on CPU                      | 320,000                        |
| Likelihood-based method on CPU* | 2,100                          |

\*Likelihood-based method outputs 8 reconstructed variables

Reconstructing Neutrino Energy using CNNs - J. Micallef

### Conclusions

- The GeV-scale CNN shows comparable resolution (to previous methods) for IceCube's low energy  $v_{\mu} \& v_{e}$  CC events Reconstruction speed is much faster than previous methods!
- •
- Future work currently in progress:
  - Populating higher energies for training sample Ο
  - Optimizing reconstruction for other variables: Ο
    - Direction -- see Shiqi Yu's poster!
    - Particle identification classification
    - Interaction vertex reconstruction

Acknowledgements:

"This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1848739 and NSF-1913607. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."



#### Reconstructing Neutrino Energy using CNNs - J. Micallef