Luminescence of water and ice a novel detection channel for neutrino telescopes

Anna Pollmann

Discussion NU #32 Tue 13 Jul 12:00h 9 05 **POS 1093**

- Largest particle detectors on Earth
- Ideal for rare event searches

Working principle

- Large transparent volume instrumented with light sensors
- Particles interact with the natural medium
- Charged particles produce Cherenkov light at relativistic speeds
- Emitted light is detected by sensors

- Largest particle detectors on Earth
- Ideal for rare event searches

Working principle

- Large transparent volume instrumented with light sensors
- Particles interact with the natural medium
- Charged particles produce Cherenkov light at relativistic speeds
- Emitted light is detected by sensors

- Largest particle detectors on Earth
- Ideal for rare event searches

Working principle

- Large transparent volume instrumented with light sensors
- Particles interact with the natural medium
- Charged particles produce Cherenkov light at relativistic speeds
- Emitted light is detected by sensors

- Largest particle detectors on Earth
- Ideal for rare event searches

Working principle

- Large transparent volume instrumented with light sensors
- Particles interact with the natural medium
- Charged particles produce Cherenkov light at relativistic speeds
- Emitted light is detected by sensors

- Largest particle detectors on Earth
- Ideal for rare event searches

Working principle

- Large transparent volume instrumented with light sensors
- Particles interact with the natural medium
- Charged particles produce Cherenkov light at relativistic speeds
- Emitted light is detected by sensors

- Passage of ionising radiation through matter
- Excitation of atoms / molecules / lattice
- Relaxation with isotropic light emission

Characterisation

- light yield per deposited energy
- decay kinetics
- wavelength spectrum
- quenching

works for all speeds works for all ionising radiation

How does it work in water / ice?

- temperature
- impurities / solubles
- radiation type

- Passage of ionising radiation through matter
- Excitation of atoms / molecules / lattice
- Relaxation with isotropic light emission

Characterisation

- light yield per deposited energy
- decay kinetics
- wavelength spectrum
- quenching

works for all speeds works for all ionising radiation

How does it work in water / ice?

- temperature
- impurities / solubles
- radiation type

- Passage of ionising radiation through matter
- Excitation of atoms / molecules / lattice
- Relaxation with isotropic light emission

Characterisation

- light yield per deposited energy
- decay kinetics
- wavelength spectrum
- quenching

works for all speeds works for all ionising radiation

How does it work in water / ice?

- temperature
- impurities / solubles
- radiation type

- Passage of ionising radiation through matter
- Excitation of atoms / molecules / lattice
- Relaxation with isotropic light emission

Characterisation

- light yield per deposited energy
- decay kinetics
- wavelength spectrum
- quenching

works for all speeds works for all ionising radiation

How does it work in water / ice?

- temperature
- impurities / solubles
- radiation type

- Passage of ionising radiation through matter
- Excitation of atoms / molecules / lattice
- Relaxation with isotropic light emission

Characterisation

- light yield per deposited energy
- decay kinetics
- wavelength spectrum
- quenching

works for all speeds works for all ionising radiation

How does it work in water / ice?

Luminescence light emission pattern

- temperature
- impurities / solubles
- radiation type

Measurements in laboratory

- ultra-pure water* and bubble free ice
- induced luminescence light with radioactive source
- measured single photons with photomultiplier
- probed background
- measured & calculated optics

* HLPC grade: TOC < 5 ppb, > $18M\Omega$

temperature

Quenching: Use different radioactive sources

Decay kinetics: Time between subsequent pulses is recorded

Measurements in laboratory

- ultra-pure water* and bubble free ice
- induced luminescence light with radioactive source
- measured single photons with photomultiplier
- probed background
- measured & calculated optics

* HLPC grade: TOC < 5 ppb, > $18M\Omega$

temperature

Quenching: Use different radioactive sources

Decay kinetics: Time between subsequent pulses is recorded

Spectrum: A disk with filters is rotating in the light pathway

ultra-purified ice

South Pole

1 km .

1500 m

1850 m

2500 m

IceCube

IceCube Sensors detecting a passing muon

Tilted ice layers

Ice quality TOC ~ 7 ppb

Environ. Sci. Technol. 2011, 45, 2, 673–678

Irradiate ice with $\beta\mbox{-source}$ and measure back-scattered light

Logger

- small diameter: 92 mm
- source on spring, moved by magnets
- mirror for reflection onto PMT
- environmental sensors and cameras
- live control and read-out of on-board oscilloscope
- movable filter holder

Second experiment

Irradiate ice with $\beta\mbox{-source}$ and measure back-scattered light

Logger

- small diameter: 92 mm
- source on spring, moved by magnets
- mirror for reflection onto PMT
- environmental sensors and cameras
- live control and read-out of on-board oscilloscope
- movable filter holder

Second experiment

Irradiate ice with $\beta\mbox{-source}$ and measure back-scattered light

Logger

- small diameter: 92 mm
- source on spring, moved by magnets
- mirror for reflection onto PMT
- environmental sensors and cameras
- live control and read-out of on-board oscilloscope
- movable filter holder

Second experiment

Irradiate ice with $\beta\mbox{-source}$ and measure back-scattered light

Logger

- small diameter: 92 mm
- source on spring, moved by magnets
- mirror for reflection onto PMT
- environmental sensors and cameras
- live control and read-out of on-board oscilloscope
- movable filter holder

Second experiment

Irradiate ice with $\beta\mbox{-source}$ and measure back-scattered light

Logger

- small diameter: 92 mm
- source on spring, moved by magnets
- mirror for reflection onto PMT
- environmental sensors and cameras
- live control and read-out of on-board oscilloscope
- movable filter holder

Second experiment

Irradiate ice with $\beta\mbox{-source}$ and measure back-scattered light

Logger

- small diameter: 92 mm
- source on spring, moved by magnets
- mirror for reflection onto PMT
- environmental sensors and cameras
- live control and read-out of on-board oscilloscope
- movable filter holder

Second experiment

Irradiate ice with $\beta\mbox{-source}$ and measure back-scattered light

Logger

- small diameter: 92 mm
- source on spring, moved by magnets
- mirror for reflection onto PMT
- environmental sensors and cameras
- live control and read-out of on-board oscilloscope
- movable filter holder

Second experiment

Irradiate ice with $\beta\mbox{-source}$ and measure back-scattered light

Logger

- small diameter: 92 mm
- source on spring, moved by magnets
- mirror for reflection onto PMT
- environmental sensors and cameras
- live control and read-out of on-board oscilloscope
- movable filter holder

Second experiment

Light yield (Lab + in-situ)

Method

- optical properties measured in lab
- in-situ scattering modelled with GEANT
- rate cleaned and corrected with temperature and **background**
 - PMT noise
 - Estisol luminescence (in-situ only)
 - Cherenkov light
- in-situ: 30 different depths 5 different ice samples lab:

Results

- temperature dependence at higher values
- clear indication of quenching or solubles
- in-situ: correlation with δ^{18} O isotope ratio (part of O₂ molecule)

Light yield / γ / MeV 10^{1} 10^{0} 10^{-1}

 10^{2}

Light yield (Lab + in-situ)

Method

- optical properties measured in lab
- in-situ scattering modelled with GEANT
- rate cleaned and corrected with temperature and **background**
 - PMT noise
 - Estisol luminescence (in-situ only)
 - Cherenkov light
- in-situ: 30 different depths 5 different ice samples lab:

Results

- temperature dependence at higher values
- clear indication of quenching or solubles
- in-situ: correlation with δ^{18} O isotope ratio (part of O₂ molecule)

Light yield / γ / MeV 10^{1} 10^{0} 10^{-1}

 10^{2}

Depth / m

Light yield (Lab + in-situ)

Method

- optical properties measured in lab
- in-situ scattering modelled with GEANT
- rate cleaned and corrected with temperature and **background**
 - PMT noise
 - Estisol luminescence (in-situ only)
 - Cherenkov light
- in-situ: 30 different depths 5 different ice samples lab:

Results

- temperature dependence at higher values
- clear indication of quenching or solubles
- in-situ: correlation with δ^{18} O isotope ratio (part of O₂ molecule)

-ight yield / γ / MeV 10^{1} 10^{0} 10^{-1}

 10^{2}

Temperature / °C

Method

- long pass filters give integrated spectrum
- subtract Estisol and Cherenkov contribution (modelled)

- clear difference to Cherenkov Spectrum
- lab: deviation due to
 - temperature ~15%
 - quenching significant
- in-situ: deviation due to
 - ice properties significant at 400-475nm
- both: deviation due to
 - ice properties significant at 365nm

Method

- long pass filters give integrated spectrum
- subtract Estisol and Cherenkov contribution (modelled)

- clear difference to Cherenkov Spectrum
- lab: deviation due to
 - temperature ~15%
 - quenching significant
- in-situ: deviation due to
 - ice properties significant at 400-475nm
- both: deviation due to
 - ice properties significant at 365nm

Method

- long pass filters give integrated spectrum
- subtract Estisol and Cherenkov contribution (modelled)

- clear difference to Cherenkov Spectrum
- lab: deviation due to
 - temperature ~15%
 - quenching significant
- in-situ: deviation due to
 - ice properties significant at 400-475nm
- both: deviation due to
 - ice properties significant at 365nm

Method

- long pass filters give integrated spectrum
- subtract Estisol and Cherenkov contribution (modelled)

- clear difference to Cherenkov Spectrum
- lab: deviation due to
 - temperature ~15%
 - quenching significant
- in-situ: deviation due to
 - ice properties significant at 400-475nm
- both: deviation due to
 - ice properties significant at 365nm

Method

- long pass filters give integrated spectrum
- subtract Estisol and Cherenkov contribution (modelled)

- clear difference to Cherenkov Spectrum
- lab: deviation due to
 - temperature ~15%
 - quenching significant
- in-situ: deviation due to
 - ice properties significant at 400-475nm
- both: deviation due to
 - ice properties significant at 365nm

Method

- long pass filters give integrated spectrum
- subtract Estisol and Cherenkov contribution (modelled)

- clear difference to Cherenkov Spectrum
- lab: deviation due to
 - temperature ~15%
 - quenching significant
- in-situ: deviation due to
 - ice properties significant at 400-475nm
- both: deviation due to
 - ice properties significant at 365nm

Decay kinetics (in-situ)

Method

- time difference between a pulse and all subsequent pulses
- subtract Estistol contribution (modelled)
- short < 120 ns:
 - obtained from waveform
 - corrected for PMT effects
- long > 120 ns:
 - obtained from trigger timestamps

Results

- little depth dependence

Decay times of ice

 $\tau_1 \approx 2.44$ ns $\tau_2 \approx 196 \text{ ns}$ τ₃ ≈ 5.03 μs τ₄ ≈ 56.1 μs

10

Application

Search for massive Big Bang relics

- Q-balls:
 - predicted in supersymmetry
 - coherent states of squarks, sleptons, Higgs field
 - candidates for Dark Matter
 - charged Q-balls emit luminescence light
- Magnetic monopoles:
 - predicted in GUT, further unifying theories and electroweak theory
 - topologically stable defect in vacuum
 - carry at least an isolated magnetic charge
 - see first search ever: POS 534 (DM 16 Jul 18:00h) using light yield and decay time
- Nuclearites
 - stable states in SM in thermodynamic processes
 - lumps of u-, d-, s-quarks (neutron stars)
- Super heavy neutral Dark Matter

Standard model particles

- energy reconstruction
- reconstruction of signature features

11

Charged Q-Ball & Noise

0.001 *c*, Z=137 $Q = 10^{20}$

Application

Search for massive Big Bang relics

- Q-balls:
 - predicted in supersymmetry
 - coherent states of squarks, sleptons, Higgs field
 - candidates for Dark Matter
 - charged Q-balls emit luminescence light
- Magnetic monopoles:
 - predicted in GUT, further unifying theories and electroweak theory
 - topologically stable defect in vacuum
 - carry at least an isolated magnetic charge
 - see first search ever: POS 534 (DM 16 Jul 18:00h) using light yield and decay time
- Nuclearites
 - stable states in SM in thermodynamic processes
 - lumps of u-, d-, s-quarks (neutron stars)
- Super heavy neutral Dark Matter

Standard model particles

- energy reconstruction
- reconstruction of signature features

11

Summary & outlook

- Properties of luminescence of pure water and ice measured in lab and in-situ

First search at neutrino telescope conducted, see POS 534 (DM 16 Jul 18:00h)

- Ready for use for various applications in water and ice

Analysis of exited molecule species ongoing

anna.pollmann@uni-wuppertal.de

Luminescence of water and ice a novel detection channel for neutrino telescopes

Anna Pollmann

What is it about:

Measurements of luminescence properties in water and ice @ South Pole and in laboratory

- light yield
- decay kinetics
- spectrum
- quenching

Why relevant:

- the huge volume of large neutrino telescopes makes them ideal for rare event searches ullet
- but these water-Cherenkov detectors rely on Cherenkov light only
- luminescence light would enable searches for other particles in other parameter ranges

Conclusions:

- channel

Spectrum of luminescence of ice

Simulations of Magnetic Monopoles and Q-balls show that luminescence is a suitable new detection

First search for Magnetic Monopoles yielded World leading sensitivities (POS 534, DM 16 Jul 18:00h)

