The UHECR dipole and quadrupole in the latest data from the original Auger and TA surface detectors

L. Anchordoqui T. Bister J. Biteau L. Caccianiga R. de Almeida
 O. Deligny A. di Matteo U. Giaccari D. Harari J. Kim
 M. Kuznetsov I. Maris G. Rubtsov P. Tinyakov¹ S. Troitsky
 F. Urban

for the Pierre Auger and Telescope Array collaborations

¹Université Libre de Bruxelles (ULB)

37th International Cosmic Ray Conference (ICRC 2021) July 12th – 23rd, 2021, Online – Berlin, Germany

Auger and TA UHECR observatories

cover full sky together!

The data sets

Telescope Array data

- 2008 May 11 2019 May 10
- \blacktriangleright strict cuts, $\theta < 55^\circ$
- 14000 km² yr sr effective exposure

Pierre Auger Observatory data

- 2004 Jan 01 2020 Dec 31
- 5T5 events, θ < 80° (bad periods removed, POS2 condition imposed)
- 112 000 km² yr sr effective exposure

Combined Auger + TA exposure

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

The cross-calibration of energy scales

- For correct determination of flux multipoles one must ensure that the Auger and TA energy scales match as otherwise one gets a spurious N-S anisotropy.
- Key point of the method: the true UHECR flux integrated over the given energy bin and over the common band φ^{true}_j = ∫^{E_{j+1}}_{E_j} ∫^{δ_{max}_{δmin} J(E, n) dE dΩ can be independently measured by the two observatories. The results must agree in all energy bins when energy scales match.}
- Given the directional exposures $\omega_{\text{Auger}}(\mathbf{n})$, $\omega_{\text{TA}}(\mathbf{n})$ of the two arrays and a declination band $(\delta_{\min}, \delta_{\max})$ where both $\omega_a(\mathbf{n}) \neq 0$,

$$\phi_{aj}^{\mathsf{est.}} = \sum_k 1/\omega_{a}(\mathsf{n}_k)$$

are unbiased estimators of ϕ_j^{true} with the statistical uncertainties $\sigma_{aj} = \sqrt{\sum_k 1/\omega_a^2(\mathbf{n}_k)}.$

Cross-calibration setup:

- \blacktriangleright The declination band $\delta_{\min}=-11^{\circ}<\delta<+43^{\circ}=\delta_{\max}$ (optimized by MC)
- The nominal $\log_{10}(E/eV)$ bins
 - ▶ $[19.0, 19.1), [19.1, 19.2), \dots, [19.9, 20.0), [20.0, +\infty)$ for TA (11 bins)
 - ▶ $[18.9, 19.0), [19.0, 19.1), \dots, [19.8, 19.9), [19.9, +\infty)$ for Auger (11 bins)

(the last are larger to ensure $\gtrsim 10$ events in the bin)

- Assume a twice-broken power-law model for the energy spectrum in the band (6 params θ_J)
- ► Assume power-law conversion of TA and Auger nominal energies :

$$E_{Auger} = E_0 e^{lpha} \left(E_{TA} / E_0
ight)^{eta} \qquad E_{TA} = E_0 e^{-lpha / eta} \left(E_{Auger} / E_0
ight)^{1/eta} \qquad (E_0 = 10 \, \, {
m EeV})$$

▶ Use χ^2 based on a log-normal likelihood (found accurate in simulations provided \gtrsim 10 events):

$$\chi^{2}(\boldsymbol{\theta}_{J}, \alpha, \beta) = \sum_{aj} \frac{\left(\ln \phi_{aj}^{\text{est.}} - \ln \phi_{aj}^{\text{pred.}}(\boldsymbol{\theta}_{J}, \alpha, \beta)\right)^{2}}{\left(\sigma_{aj} / \phi_{aj}^{\text{est.}}\right)^{2}}.$$

Cross-calibration result

- $\alpha = -0.154 \pm 0.013$
- ▶ $\beta = 0.937 \pm 0.017$

$$ho_{lphaeta} = -0.177 ~\chi^2/n = 15.6/14$$

($ho = 0.34$)

Last three bins are shown separately in the plot but combined into one for the fit.

NOTE: event selection is not optimized for energy spectrum measurements.

 $\implies \text{Results are NOT to be used as} \\ \text{Auger} \leftrightarrow \text{TA energy conversion rule outside} \\ \text{of this study.} \\$

くしゃ 小田 そうかん 日本 人口 そう

The energy bins for large-scale anisotropy searches

- We choose three energy bins for dipole and quadrupole searches. The first bin boundary is fixed by the availability of TA data, 10 EeV (TA) = (8.57 ± 0.11) EeV (Auger)
- For the second and third bin we use the same boundaries as in Auger-only studies: 16 EeV (Auger) = (19.47 ± 0.32) EeV (TA), 32 EeV (Auger) = (40.8 ± 1.1) EeV (TA)
- ► In summary, the following 3 energy bins were used:
 - ▶ TA energy (EeV): [10 19.47], [19.47 40.8], $[40.8 \infty]$
 - Auger energy (EeV): [8.57 16], [16 32], $[32 \infty]$
- Uncertainties on the conversion treated as "effective" exposure corrections, e.g.

$$\omega_{\mathrm{TA}} + \sigma_{\mathrm{TA}}^{\mathrm{eff.}} = \omega_{\mathrm{TA}} \frac{\int_{40.8 \mathrm{~EeV}}^{+\infty} J(E) \, \mathrm{d}E}{\int_{41.9 \mathrm{~EeV}}^{+\infty} J(E) \, \mathrm{d}E}$$

Dipole and quadrupole measurement

UHECR flux is decomposed in the sum of spherical harmonics

$$\Phi(\mathbf{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{+\ell} \frac{\partial_{\ell m} Y_{\ell m}(\mathbf{n})}{\partial_{\ell m} Y_{\ell m}(\mathbf{n})} = \Phi_0 \left(1 + \mathbf{d} \cdot \mathbf{n} + \frac{1}{2} \mathbf{n} \cdot \mathbf{Q} \mathbf{n} + \ldots\right)$$

where dipole vector **d** and quadrupole tensor **Q** are combinations of a_{1m} and a_{2m} , respectively.

► From the data, harmonic amplitudes a_{ℓm} and their uncertainties are calculated as follows:

$$a_{\ell m} = \sum_{k} \frac{Y_{\ell m}(\mathbf{n}_{k})}{\omega(\mathbf{n}_{k})}, \qquad \sigma_{\ell m} \sigma_{\ell' m'} \rho_{\ell m, \ell' m'} = \sum_{k} \frac{Y_{\ell m}(\mathbf{n}_{k}) Y_{\ell' m'}(\mathbf{n}_{k})}{\omega^{2}(\mathbf{n}_{k})}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Full sky flux maps in 3 energy bins

Flux averaged over 45° top-hat window

Reconstructed dipole + quadrupole

Full-sky dipole and quadrupole components

energies (Auger)	[8.57 EeV, 16 EeV)	$[16 \ \mathrm{EeV}, 32 \ \mathrm{EeV})$	[32 EeV, $+\infty$)
energies (TA)	$[10 {\rm EeV}, 19.47 {\rm EeV})$	$[19.47 { m EeV}, 40.8 { m EeV})$	[40.8 $\mathrm{EeV}, +\infty$)
d_{\times} [%]	$-0.7\pm1.1\pm0.0$	$+1.6\pm2.0\pm0.0$	$-5.3\pm3.9\pm0.1$
d_y [%]	$+4.8\pm1.1\pm0.0$	$+3.9\pm1.9\pm0.1$	$+9.7\pm3.7\pm0.0$
d_z [%]	$-3.3\pm1.4\pm1.3$	$-6.0\pm2.4\pm1.3$	$+3.4\pm4.7\pm3.6$
$Q_{xx} - Q_{yy}$ [%]	$-5.1\pm4.8\pm0.0$	$+13.6 \pm 8.3 \pm 0.0$	$+43\pm16\pm0$
Q_{xz} [%]	$-3.9\pm2.9\pm0.1$	$+5.4\pm5.1\pm0.0$	$+5\pm11\pm0$
Q_{yz} [%]	$-4.9\pm2.9\pm0.0$	$-9.6\pm5.0\pm0.1$	$+11.9 \pm 9.8 \pm 0.2$
Q_{zz} [%]	$+0.5\pm3.3\pm1.7$	$+5.2 \pm 5.8 \pm 1.7$	$+20\pm11\pm5$
Q_{xy} [%]	$+2.2\pm2.4\pm0.0$	$+0.2\pm4.2\pm0.1$	$+4.5\pm8.1\pm0.1$
$C_1 \ [10^{-3}]$	$4.8\pm2.0\pm1.2$	$7.6\pm4.6\pm2.2$	$19\pm12\pm4$
$C_2 [10^{-3}]$	$0.85 \pm 0.66 \pm 0.02$	$3.1\pm2.2\pm0.2$	$15.5\pm8.9\pm2.4$

Table: Uncertainties: \pm statistical \pm cross-calibration. Statistical uncertainties are uncorrelated except $\rho(d_x, Q_{xz}) = \rho(d_y, Q_{yz}) = 0.45$ and $\rho(d_z, Q_{zz}) = 0.53$

Comparison to Auger-only result

Auger-only (see talk by Rogério de Almeida)				
	E (Auger)	$8-16{ m EeV}$	16 – 32 EeV	$32-\infty{ m EeV}$
$\ell_{max} = 1$	dz [%]	-3 ± 1	-7 ± 3	-12 ± 5
$\ell_{max} = 2$	d_z [%]	$+1 \pm 4$	$-15~\pm7$	$-22~\pm13$
	Q_{zz} [%]	$+7.4\pm6.4$	$-14~\pm14$	$-17~\pm26$

Auger + TA, this work					
-	E (Auger)	8.57-16 EeV	16-32 EeV	$32-\infty$ EeV	
	E (TA)	10-19.47 EeV	$19.47-40.8~{ m EeV}$	$40.8-\infty$ EeV	
$\ell_{max} = \infty$	d _z [%]	$-3.3 \pm 1.4 \pm 1.3$	$-6.0\pm2.4\pm1.3$	$+3.4\pm4.7\pm3.6$	
	Q_{zz} [%]	$+0.5 \pm 3.3 \pm 1.7$	$+5.2\pm5.8\pm1.7$	$+20\ \pm 11\ \pm 5$	

- ▶ Uncertainties on d_z , Q_{zz} halved compared to Auger-only with $\ell_{max}=2$
- Other uncertainties only slightly smaller

- ▶ Results are compatible with Auger-only ones obtained under assumption $\ell \leq 2$, but d_z and Q_{zz} have smaller uncertainly
- None of the moments are significant with > 3σ except d_y in the lowest energy bin (already reported by Auger)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

 Uncertainties can be further reduced by having more exposure in the Northern hemisphere; TA×4 will be crucial for this purpose.

BACKUP SLIDES

Full sky flux maps in Galactic coordinates

Flux averaged over 45° top-hat window

Reconstructed dipole + quadrupole

Comparison to Auger-only result: all dipole components

Energy bin, EeV			
this work	8.57 - 16	16 - 32	$32-\infty$
Auger-only	8 - 16	16 - 32	$32-\infty$
<i>d</i> _x , %	$-0.7\pm1.1\pm0.0$	$+1.6 \pm 2.0 \pm 0.0$	$-5.3\pm3.9\pm0.1$
	-0.5 ± 1.3	$+5\pm2$	-12 ± 5
d_y , %	$+4.8\pm1.1\pm0.0$	$+3.9\pm1.9\pm0.1$	$+9.7 \pm 3.7 \pm 0.0$
	$+4.5\pm1.3$	$+9\pm2$	$+11\pm5$
dz, %	$-3.3\pm1.4\pm1.3$	$-6.0\pm2.4\pm1.3$	$+3.4 \pm 4.7 \pm 3.6$
	$+1\pm4$	-15 ± 7	-22 ± 13

- Energies are in Auger energy scale
- > Auger-only results are from the talk by Rogério de Almeida

The energy conversion: comparison to spectrum WG results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙