CR/Propa

CRPropa 3.2: a framework for highenergy astroparticle propagation

Rafael Alves Batista for the CRPropa team:

J. Becker Tjus, J. Dörner, A. Dundovic, B. Eichmann, A. Frie, C. Heiter, M. R. Hörbe, K.-H. Kampert, L. Merten, G. Müller, P. Reichherzer, A. Saveliev, L. Schlegel, G. Sigl, A. van Vliet, T. Winchen

Department of Astrophysics/IMAPP Radboud University Nijmegen r.batista@astro.ru.nl

the high-energy astrophysical landscape

propagation picture

astrophysical inputs

injection spectrum initial composition source distribution source emissivity evolution

propagation

particle interactions magnetic fields

outputs

recipes for astroparticle propagation

particle acceleration background photon fields background matter fields

spectrum particle type arrival directions arrival times

observations

CRPropa 3.2: a framework for high-energy astroparticle propagation

the CRPropa framework

Rafael Alves Batista I ICRC 2021 I CRPropa 3.2: a framework for high-energy astroparticle propagation

- publicly available Monte Carlo code
- modular structure
- propagation of cosmic rays, gamma rays, neutrinos
- galactic and extragalactic propagation
- parallelisation with OpenMP
- development on Github: https://github.com/CRPropa/CRPropa3
- **CRPropa 3.2 coming out very soon!**

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

CRPropa: an overview

Stochastic Differential Equations **3D** (diffusive)

modes

simple 1D

CRPropa: propagation modes

Boris-Push 3D

Runge-Kutta 3D

CRPropa 3.2: a framework for high-energy astroparticle propagation

CRPropa: interactions with photon backgrounds

Alves Batista, de Almeida, Lago, Kotera. JCAP 01 (2019) 002. arXiv:1806.10879

test UHECR source models

Eichmann et al. JCAP 02 (2018) 036. arXiv:1701.06792

gamma rays + IGMFs 10^{-1} VÉRITAS sec)] Halo size = 0.3HESS Halo size = 0.6 ° Fermi/LAT 9 years CTA North 50 h ² dN/dE [TeV/(cm² s 10-12 10-12 10^{-1} E^2 10 10^{-3} 10^{-2} 10⁻¹ 10^{0} 10^{1} 10^{2} Energy [TeV] CTA Consortium. JCAP 02 (2021) 048. arXiv:2010.01349

and much more!

Rafael Alves Batista ICRC 2021

applications at a glance

transition G-EG CRs

Thoudam et al. Astron. Astrophys. 595 (2016) A33. arXiv:1605.03111

diffusion of Galactic CRs

Merten et al. JCAP 06 (2016) 046. arXiv:1704.07484

EGMF constraints

CRPropa 3.2: a framework for high-energy astroparticle propagation

what is new?

I CRPropa 3.2: a framework for high-energy astroparticle propagation

- ensemble-averaged propagation using transport equations
- ideal for diffusive propagation of charged particles, e.g., in the Galaxy
- employs stochastic differential equations

$$\frac{\partial n}{\partial t} + \overrightarrow{u} \cdot \overrightarrow{\nabla} n = \overrightarrow{\nabla} \cdot \left(\hat{\kappa} \,\overrightarrow{\nabla} n\right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 \kappa_{pp} \frac{\partial n}{\partial p}\right) + \frac{p}{3} \frac{\partial n}{\partial p} \overrightarrow{\nabla} \cdot \overrightarrow{u}$$

example

- Galactic wind termination shock
- anisotropic diffusion + advection + adiabatic cooling
- Archimedean spiral background field
- CRs from the termination shocks might account for part of the flux at PeV-EeV

Merten et al. ApJ 859 (2018) 63. arXiv:1803.08376

ensemble-averaged propagation

I CRPropa 3.2: a framework for high-energy astroparticle propagation

Winchen and Buitnik. Astropart. Phys. 102 (2018) 25. arXiv:1612.0.675

- implementation of 1st- and 2nd-order Fermi acceleration
- performance improvements through particle splitting
- \blacktriangleright quasi-linear theory predicts scattering of charged particle in magnetic fields with typical length scale λ

Prediction:
$$\frac{dN}{dE} \propto E^{3-q} \exp\left(-\left(\frac{E}{E_0}\right)^{2-q}\right)$$

example

- > 2nd-order Fermi acceleration of protons
- sub-relativistic case: β=0.5

new features: acceleration

I CRPropa 3.2: a framework for high-energy astroparticle propagation

Jasche, van Vliet, Rachen. PoS (ICRC2019) 447.

- ► problem with 3D/4D Monte Carlo simulations → low detection efficiency
- start with isotropic emission and learn from detections and non-detections
- correct source emission according to detection probability using a von Mises-Fischer distribution
- ▶ performance enhancement depends on scenario → weaker magnetic fields lead to greater speedup, in general

new features: targetting

new features: new photon production channels

Heiter, Kuempel, Walz, Erdmann. Astropart. Phys. 102 (2018) 102. arXiv:1710.11406

new feature: electromagnetic interactions

- CRPropa-native implementation of electromagnetic interactions
- replaces the external codes DINT and EleCa used in previous versions
- new interactions: pair production, inverse Compton scattering, double and triplet pair production
- thinning procedure to speed up simulations \rightarrow performance gains
- applications to gamma-ray astronomy: EBL & IGMF studies, UHECR-induced cascades, etc

example

- gamma rays from blazar 1ES 0229+200
- ► 3D simulations
- models for IGMF constraints, searches for pair haloes

Alves Batista and Saveliev. arXiv: 2105.12020

summary & outlook

Rafael Alves Batista **ICRC 2021**

CR/Propa

- CRPropa: public framework for the propagation of high-energy particles
- treatment of CRs, neutrinos, gamma rays, electrons
- ▶ 1D, 3D, and "4D" simulations possible
- many photon background and magnetic-field models
- modular design enables easy customisation for various applications in astroparticle physics enables a self-consistent interpretation of observations with multiple messengers

summary & outlook

- improved algorithm for Galactic CR propagation
- new Galactic magnetic field models
- targeting algorithm to speed up 3D/4D simulations
- native treatment of electromagnetic interactions
- new channels for photon production
- and much more