Telescope Array search for EeV photons

O.E. Kalashev, I.V. Kharuk, M.Yu. Kuznetsov, G.I. Rubtsov for the Telescope Array Collaboration

Telescope Array Collaboration

R. U. Abbasi¹, M. Abe², T. Abu-Zayyad^{1,3}, M. Allen³, Y. Arai⁴, E. Barcikowski³, J. W. Belz³, D. R. Bergman³, S. A. Blake³, I. Buckland³, R. Cady³, B. G. Cheon⁵, J. Chiba⁶, M. Chikawa⁷, T. Fujil⁸, K. Fujisue⁷, K. Fujita⁴, R. Fujiwara⁴, M. Fukushima^{7,9}, R. Fukushima⁴, G. Furlich³, R. Gonzalez³, W. Hanlon³, M. Hayashi¹⁰, N. Hayashi¹⁰, N. Hayashi¹¹, K. Hibino¹¹, R. Higuchi⁷, K. Honda¹², D. Ikeda¹¹, T. Inadomi¹³, N. Inoue², T. Ishii¹², H. Ito¹⁴, D. Ivanov³, H. Iwakura¹³, H. M. Jeong¹⁵, S. Jeong¹⁵, C. C. H. Jui³, K. Kadota¹⁶, F. Kakimoto¹¹, O. Kalashev¹⁷, K. Kasahara¹⁸, S. Kasami¹⁹, H. Kawai²⁰,
S. Kawakami⁴, S. Kawana², K. Kawata⁷, E. Kido¹⁴, I. Kharuk¹⁷, H. B. Kim⁵, J. H. Kim³, J. H. Kim³, M. H. Kim¹⁵, S. W. Kim¹⁵, Y. Kushigami⁴, Y. Kubota¹³, S. Kurisu¹³, V. Kuzmin¹⁷, M. Kuznetsov^{17,21}, Y. J. Kwon²², K. H. Lee¹⁵, B. Lubsandorzhiev¹⁷, J. P. Lundquist^{3,23}, K. Machida¹², H. Matsumiya⁴, T. Matsunya⁴, J. N. Matthews³, R. Mayta⁴, M. Minamino⁴, K. Mukai¹², I. Myerg³, S. Nagataki¹⁴, K. Nakai⁴, R. Nakamura¹³, T. Nonaka⁷, H. Oda⁴, S. Ogio^{4,25}, M. Ohnishi⁷, H. Ohoka⁷, Y. Oku¹⁹, T. Okuda²⁶, Y. Omura⁴, M. Ono¹⁴, R. Song⁴, A. Oshima⁴, S. Ozawa²⁷, I.H. Park¹⁵, M. Potts³, M.S. Pshirkov^{17,28}, J. Remington³, D. C. Rodrigue², G. I. Rubtsov¹⁷, D. Byu²⁹, H. Sagawa⁷, R. Sahara⁴, Y. Saito¹³, N. Sakaki⁷, T. Sako⁷, N. Sakura¹⁶, K. Sano¹³, K. Sato⁴, T. Seki¹³, K. Sekino⁷, P.D. Shah⁵, Y. Shibasak¹³, F. Shibasa¹⁹, T. Shibata⁷, H. Shimodaira⁷, B. K. Shin²⁹, H. Sagawa⁷, R. Takashi⁴, M. Takamura⁶, M. Takaeu¹⁷, M. Takashi⁴, Y. Takasha⁴, M. Takamura⁶, M. Takeda⁷, R. Takeishi⁷, A. Taketa³⁰, M. Takita⁷, Y. Tameda¹⁹, H. Tanaka⁴, K. Tanaka³¹, M. Tanaka³², Y. Tanoue⁴, S. B. Thomas³, G. B. Thomson³, P. Tinyakov^{17,21}, I. Tkachev¹⁷, H. Tokuno³³, T. Tomida¹³, S. Troitsky¹⁷, R. T

¹ Loyola University Chicago ² Saitama University ³ University of Utah ⁴ Osaka City University ⁵ Hanyang University ⁶ Tokyo University of Science ⁷ University of Tokyo (ICRR) ⁸ Kyoto University ⁹ University of Tokyo (Kavli Institute) ¹⁰ Shinshu University ¹¹ Kanagawa University ¹² University of Yamanashi ¹³ Shinshu University (Inst. of Engineering) ¹⁴ RIKEN ¹⁵ Sungkyunkwan University ¹⁶ Tokyo City University ¹⁷ Institute for Nuclear Research of the Russian Academy of Sciences ¹⁸ Shibaura Institute of Technology ¹⁹ Osaka Electro-Communication University ²⁰ Chiba University ²¹ Université Libre de Bruxelles ²² Yonsei University ²³ University of Nova Gorica ²⁴ Kochi University ²⁵ Osaka City University (Nambu Yoichiro Institute) ²⁶ Ritsumeikan University ²⁷ National Inst. for Information and Communications Technology, Tokyo ²⁸ Lomonosov Moscow State University ²⁹ Ulsan National Institute of Science and Technology ³⁰ University of Tokyo (Earthquake Inst.) ³¹ Hiroshima City University ³² KEK ³³ Tokyo Institute of Technology ³⁴ National Instit. for Quantum and Radiological Science and Technology ³⁵ CEICO, Institute of Physics, Czech Academy of Sciences ³⁶ Ewha Womans University

Belgium, Czech Republic, Japan, Korea, Russia, Slovenia, USA

Telescope Array surface detector

- 507 SD's, 3 m² each
- ▶ 680 *km*² area
- operating since May 2008

Largest UHECR statistics in the Northern Hemisphere

Photon search strategy

Photon-induced showers:

- develop deeper in the atmosphere \Rightarrow arrive younger
- \blacktriangleright contain less muons \Rightarrow SD waveforms are less compressed

We use the neural-network classifier trained on both the

- time-resolved waveforms
- and derived features: front curvature, Area-over-peak, number of FADC signal peaks, \u03c8²/d.o.f., S_b

p- γ classifier based on neural network

Input:

- incidence time and integral signal for 6x6 SD stations
- time-resolved signals for all triggered stations ordered by the front arrival time
- composition-sensitive event features

TA, Phys.Rev.D 99 (2019) 02200

Output:

The value ξ ∈ [0, 1] for an event. ξ is close to 0 for proton-induced showers and to 1 for γ-induced.

p- γ classifier: list of event features

- **1**. Zenith angle, θ ;
- 2. Signal density at 800 m from the shower core, S_{800} ;
- 3. Linsley front curvature parameter, *a*;
- 4. Area-over-peak (AoP) of the signal at 1200 m;

Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

- 5. AoP LDF slope parameter;
- 6. Number of detectors hit;
- 7. N. of detectors excluded from the fit of the shower front;

8.
$$\chi^2/d.o.f.;$$

9. $S_b = \sum S_i \times r_i^b$ parameter for b = 2.5, 3.0, 3.5, 4.0 and b = 4.5;

Ros, Supanitsky, Medina-Tanco et al. Astropart.Phys. 47 (2013) 10

- 10. The sum of signals of all detectors of the event;
- 11. Asymmetry of signal at upper and lower layers of detectors;
- 12. Total n. of peaks within all FADC traces;
- 13. N. of peaks for the detector with the largest signal;
- 14-15. N. of peaks present in the upper layer and not in lower (and vice versa);

Photon search with p- γ classifier

- The p- γ classifier is trained with two Monte-Carlo sets:
 - \blacktriangleright γ -induced events (Signal)
 - proton-induced events (Background)
- The output of the classifier for each event is a number ξ ∈ [0 : 1]: 1 pure signal (γ), 0 pure background (p).
- We call "photon-candidates" events with $\xi > \xi_{cut}$.
- The optimal value of ξ_{cut} is obtained by the requirement of the strongest sensitivity in case null-hypothesis is valid, i.e. all events are protons.

Photon search: data and Monte-Carlo sets

- Data collected by TA surface detector for the 11 years: 2008-05-11 – 2019-05-10
- > p and γ Monte-Carlo sets with CORSIKA and dethinning

Stokes et al, Astropart.Phys.35:759,2012

Cuts for both data and MC:

- 7 or more detectors triggered
- core distance to array boundary is larger than 1200m
- ▶ χ²/d.o.f. < 5</p>
- θ < 55°
 </p>
- ► $E_{\gamma} > 10^{19.0}$ eV (E_{γ} is estimated with photon Monte-Carlo)
 - or $E_{\gamma} > 10^{18.5}$ eV for training Monte-Carlo sets

11327 events after cuts

MC set is split into 3 parts: (I) 80% of events, for training the classifier, (II) for testing and cut optimization, (III) for exposure estimate.

Distribution of classifier result (ξ) for data and MC

Efficient separation of proton and photon-induced events.

- Geometric exposure for $\theta \in (0^\circ, 55^\circ)$: **13221 km² sr yr**
- Effective exposure is estimated using photon MC assuming E⁻² primary spectrum

E ₀	quality cuts	$\xi > \xi_{cut}$	A _{eff} km² sr yr
10 ^{19.0}	43.7%	59.4%	3428
10 ^{19.5}	52.0%	80.7%	5546
10 ^{20.0}	64.3%	92.7%	7875

Efficiency of photon candidate selection ($\xi > \xi_{cut}$) has substantially grown compared to the previous analysis with BDT classifier – 16.2%, 37.2% and 52.3% for $\log_{10} E_0 = 19.0, 19.5$ and 20.0, correspondingly.

TA Collaboration, Astroparticle Physics 110 (2019) 8

Photon candidate events for $E_0 > 10^{19.0} \text{ eV}$

		,
energy cut	event date and time	comment
$E_0 > 10^{19.0} \text{ eV}$	2010-10-04 16:58:42	
	2011-07-27 08:06:15	
	2011-09-16 19:40:56	
	2012-05-01 00:59:15	
	2012-07-06 01:49:11	
	2012-09-07 01:55:45	
	2013-08-27 22:38:37	
	2014-07-31 21:19:19	
	2014-08-14 09:46:58	
	2014-08-23 02:39:15	
	2014-09-27 07:54:35	
	2015-07-19 01:03:04	
	2017-09-12 18:32:59	
	2018-08-02 15:25:51	
	2018-10-03 04:03:48	
	2019-04-30 22:43:17	

Photon candidate events for $E_0 > 10^{19.0} \text{ eV}$

energy cut	event date and time	comment	
$E_0 > 10^{19.0} {\rm eV}$	2010-10-04 16:58:42	TGF candidate event	
	2011-07-27 08:06:15	TGF candidate event	
	2011-09-16 19:40:56	TGF candidate event	
	2012-05-01 00:59:15		
	2012-07-06 01:49:11	TGF candidate event	
	2012-09-07 01:55:45	TGF candidate event	
	2013-08-27 22:38:37	TGF candidate event	
	2014-07-31 21:19:19	TGF candidate event	
	2014-08-14 09:46:58		
	2014-08-23 02:39:15	TGF candidate event	
	2014-09-27 07:54:35	TGF candidate event	
	2015-07-19 01:03:04	TGF candidate event	
	2017-09-12 18:32:59	TGF candidate event	
	2018-08-02 15:25:51	TGF candidate event	
	2018-10-03 04:03:48	TGF candidate event	
	2019-04-30 22:43:17	TGF candidate event	

Terrestrial Gamma-Ray Flashes candidate events are time correlated with the lightnings registered by National Lightning Detection Network.

TA collaboration, JGR Atmospheres (2020) J. Remington, talk 828, this conference

- 2 photon-candidate events observed
- 0.8 events expected from proton MC

Results: photon flux limits

<i>E</i> ₀ , eV	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
γ candidates	162	111	5 0
$\bar{n} <$	6.72	5.14	3.09
A _{eff}	3428	5546	7875
$ F_{\gamma} <$	$2.0 imes10^{-3}$	$9.3 imes10^{-4}$	$3.9 imes10^{-4}$

Conclusions

- The search for photons in the TA SD 11 years data is performed with the novel neural-network classifier.
- ▶ Diffuse photon flux limits above 10^{19.0} eV are presented.

The TGF-induced events are classified as the photon candidates.

see talk 828 by J. Remington, this conference