

Measurement of the cosmic ray H&He spectrum above 100TeV by the LHAASO experiment

Zhiyong You

on behalf of the LHAASO Collaboration

The Institute of High Energy Physics of CAS

37th ICRC Online - Berlin, Getmany

14th July 2021 1

Outline

- > Hybrid Experiment
- > Data Selection
- > Simulation
- > Shower Reconstruction
- Energy Reconstruction
- > Composition Discrimination

Hybrid Experiment

KM2A: (ED, MD, 1.3 km²) Electromagnetic Detector (spacing of 15 m) Muon Detector (Muon content, spacing of 15 m)

WCDA: (78,000m²) Water Cherenkov Detector Array (Full Array)

Mt. Haizi, Daocheng, Sichuan 29°21′31″ N, 100°08′15″ E 4410 m a.s.l., 600 g/cm ≻ Hybrid measurement

(Multiple parameters)

Large aperture (high statistics)

WFCTA: Wide Field of view Cherenkov Telescope Array (Equipped with SiPM)

Data Selection

Period:

- 2020.11 ~ 2021.03 (Core in WCDA, WFCTA⊕WCDA⊕KM2A)
- 2020.11 ~ 2021.04 (Core in KM2A, WFCTA⊕KM2A)

Selections of WFCTA, KM2A and WCDA:

- > WFCTA:
- More than 10 tubes are saved after image clean
- Centroid of image limited in 5° (Image contained in the telescope)
- ► KM2A:
- Reconstruction shower core located in KM2A
- More than 20 ED fired and $Npe_{40-100m} > 20$
- $\frac{Npe|_{0-40m}}{Npe|_{0-100m}} > 0.5$
- > WCDA:
- Reconstruction shower core located in WCDA
- The brightest cell > 4000 Npe
- $\frac{Npe|_{0-10m}}{Npe|_{0-30m}} > 0.3$

- > Observation time and Events:
- 750 hours, 0.7 million events (Core in WCDA)
- 970 hours, 2.8 million events (Core in KM2A)

Simulation

Simulation Sample:

- ➢ Interaction model: QGSJETII04+FLUKA
- Primary particles: proton, helium, CNO, MgAlSi, iron
- ➢ Energy range: 10 TeV ~ 10 PeV
- ➤ Geometry:
 - azimuth: 95°~275°;
 - zenith:20°~40°
 - core: ± 300 m

Geometry Reconstruction:

- Core resolution:
 - <3m@100TeV (KM2A)
 - <3m above 100TeV (WCDA)
- Angular resolution:
 - <0.3°@100TeV (KM2A)
 - <0.2° above 100TeV (WCDA)

Shower Reconstruction

 $f(x, \Delta, MPV, A, \sigma_g) = A \int_{-\infty}^{+\infty} Landau(x', \Delta, MPV) \times Gaus(x', \sigma_g) dx'$

A: Total Npe of WFCTA (related to Impact parameter (Rp), primary energy)

 Δ : scaling parameters, is related to shower maximum (related to Rp)

Energy Reconstruction

Reconstruction:

- \blacktriangleright Log(A) bin: 0.1/bin
- \triangleright R_p bin : linear fit
- \succ interpolation

E resolution: 15% above 300 TeV Systematic bias: <2%

Xmax Reconstruction

Δ vs. Xmax (Rp:120m~125m)

Xmax resolution: $40 \ g/cm^2$ above 300 TeV Systematic bias: $< 10 \ g/cm^2$

Composition Discrimination

Sore>0.4

Summery and future work

- The hybrid experiment can also operates on moon night. For events fall on WCDA and for events fall on KM2A, the observation time and events:750 hours, 0.7 million events and 970 hours, 2.8 million events, respectively. Duty cycle of hybrid experiment is about 25%.
- With the core resolution better than 3m and angular resolution better than 0.3° above 100 TeV, the energy resolution of WFCTA is 15% above 300 TeV
- Component parameters based on QGSJETII04+FLUKA is studied. For Core in KM2A events, Purity better than 85%, Aperture is 4000/m²Sr.
- Next: events of Core in WCDA and more composition sensitive parameters such as RecXmax will be studied. Other simulation events based on EPOS+FLUKA is being created.