

Rapporteur talk Cosmic Ray Direct

Philipp Mertsch

37th International Cosmic Ray Conference 22 July 2021

Why bother?

CRs as spectators

- What are their sources?
- Can we find DM in CRs?
- Is there primordial anti-matter in CRs?

<u>CRs as actors</u>

- CRs produce diffuse emission
- CRs contribute to ionisation, heating
- CRs provide gravitational support
- CRs drive winds
- CRs generate turbulence

Very different demands on models!

Where do cosmic rays come from?

A theorist's hand

#19

#98

#101

#93

#112

#105

#109

us posters...

CALorimetric Electron Telescope

ears in orbit	~ 6
ain subsystems	3
ight	650 kg
er consumption	600 W
act	No e ⁻ line!

butions at ICRC 2021:

sters...

P. S. Marrocchesi

K. Kobayashi

P. Maestro

Y. Akaike

S. Tori

F. Stolzi

P. Brogi

Further contributions at ICRC 2021: <u>#</u>96 *#108* #111 D. Krasnopevtsev anisotropies (nuclei) Z. Weng H.-Y. Chou M. M. Gonzalez . anisotropies (e⁺, e⁻)

3He,⁴He

e e*

and various posters...

DArk Matter Particle Explorer		
ears in orbit		
lain subsyste	mc	~ 5.5
leight	115	4
		1400 kg
wer		400 W
) fact		€ ⁻ line?
tributions at	ICRC 20	21.
ew	X. Li F. Alemar M. Di Sani	#13 nno #117 to #114

X. Li F. Alemanno M. Di Santo L. Wu C. Yue Z. Zu	#13 #117 #114 #128 #126 #115

<u>AMS – nuclei</u>

Alpha Magnetic Spectrometer

Years in orbit	~ 10
Main subsystems	5
Weight	7000 kg
Power consumption	2000 W
Fun fact	Anti-helium?

Contributions at ICRC 2021:

He, C, O vs Li, Be, B	H. Gast	#1008
Ne, Mg, Si	A. Oliva	#763
F	Q. Yan	#707
Na	C. Zhang	#743
Fe	Y. Chen	#1145
Li, Be isotopes	L. Derome	#992
deuterons	E. F. Bueno	#113
Please turn		

Importance

- Precision: more statistics \rightarrow better constraints
- Origin: composition contains clue on sources
- Serendipity: expect the unexpected!

Composition and CR origin

V. Tatischeff #153

Source abundances depend on

- 1. composition of source reservoir
- 2. ISM phase (ionisation state)
- 3. dust content

Use *measured* chemical composition to infer the environments for CR acceleration

- 1. Volatiles mainly from superbubbles, SNRs in warm ISM contribute <30%
- 2. ²²Ne overabundance due to wind termination shocks of massive stars
- 3. Refractories can also be from superbubbles, requires continuous replenishing of dust

Composition and CR origin

• N. Walsh (Super-TIGER) #118

- Up to Z=40: Charge-dependence and preference of refractory over volatiles
- Only if choosing the right mix: 80% solar system, 20% massive (OB) stars
- Beyond Z=40: volatiles not disfavoured anymore
- \rightarrow r-process elements, NS binary mergers?

AMS – status ca. 2019

H. Gast #1008

<u>He, C, O</u>

- dominantly primary
- agree in shape > 50 GV
- break at ~ 300 GV

<u>Li, Be, B</u>

- dominantly secondary
- agree very well in shape
- also break at ~ 300 GV

The break in secondaries is ~ twice as big → propagation effect

<u>N</u>

sec. and prim. contributions

Ne, Mg, Si

<u>Ne, Mg, Si</u>

- dominantly primary
- agree in shape > 100 GV
- differ from He, C, O
- \rightarrow "two different classes"
- but what does this mean?

F

• purely secondary

<u>Na, Al</u>

• sec. and prim. (see N)

Cross-section uncertainties

M. Korsmeier #176

M. Vecchi #174

• Parametrise deviations by nuisance parameters and fit to CR data

- parameters as fitted to Li, Be, B, He, C, O
- F/Si overproduced by 20%
- Fixed by modifying $Si \rightarrow F$ cross-section

NA61/SHINE

Pilot run in 2018

- Beam energy ~14 A GeV
- C + p reaction on polyethylene and graphite targets

Data taking for light secondary (B, Li, Be) production on light primaries (C, N, O) planned for 2022.

N. Amin #102

Isotopes

L. Derome #992

 Δ M ~= 1 a.u. => no event-by-event analysis, but use shape of mass distribution

Also $^{2}H/^{1}H$ (E. F. Bueno #113) and $^{3}He/^{4}He$ (F. Giovacchini #96)

CALET

S. Torii #105

CALorimetric Electron Telescope

Years in orbit	~ 6
Main subsystems	3
Weight	650 kg
Power consumption	600 W
Fun fact	No e ⁻ line!

Contributions at ICRC 2021:

Overview	P. S. Marrocchesi	#19
р	K. Kobayashi	#98
Не	P. Brogi	#101
C, O	P. Maestro	#93
B, B/C	Y. Akaike	#112
e++e-	S. Tori	#105
Fe	F. Stolzi	#109
and various posters		

- Statistics improved by factor 2.3
- 6.5 sigma suppression above ~ 1TeV
- No preference broken PL or PL with exp. cut-off

Interpretation: electrons & positrons

- Most interpretation in framework of conventional model¹:
- Positrons produced by spallation in ISM fall short of measurements
- \rightarrow Additional source of positrons required
- PWNe (T. Linden #931, L. Orusa #149, F. Donato #154)
- Vela SNR (H. Motz #100)
- intrabinary shocks of compact binary millisecond pulsars (M. Linares #177)
- Unknown nearby source (S. Recchia #168, D. Gaggero #173)
- Old supernova remnants (PM #144)

L. Orusa #149

¹Conventional diffusion model:

- one-zone diffusion model
- typical residence time O(10) Myr at GeV
- radiative losses in muG B-fields and radiation fields with eV/cm^3 $\,$

<u>Alternative scenarios</u>

P. Lipari #169

Problems with conventional models:

- 1. Need additional e+ source
- 2. Anti-protons harder than expected
- 3. Energy loss signature in $(e^+ + e^-)$?
- 4. Individual srcs. in > 1 TeV ($e^+ + e^-$)
- 5. Issue with ${}^{9}\text{Be}/{}^{10}\text{Be}$

Similarity shapes and ratios as prod. cross-sec. Coincidence?

Would need to reduce escape time

Problems of alternative scenarios:

- 1. Different src. spectra for e^{-} and p
- 2. Same softening for e^+ and $e^-@$ 1TeV
- 3. Sec. nuclei?

R. Diesing #29

<u>CALET – proton</u>

K. Kobayahsi #98

CALorimetric Electron Telescope

Years in orbit	~ 6
Main subsystems	3
Weight	650 kg
Power consumption	600 W
Fun fact	No e ⁻ line!

Contributions at ICRC 2021:

Overview	P. S. Marrocchesi	#19
р	K. Kobayashi	#98
He	P. Brogi	#101
C, O	P. Maestro	#93
e*e-	S. Tori	#105
Fe	F. Stolzi	#109
and various posters		

- energy reach extended from ~10 to 60 TeV
- hardening at 550 GV, softening at 11 TeV
- in agreement with DAMPE and CREAM balloon

CALET – helium

CALorimetric Electron Telescope

Years in orbit	~ 6
Main subsystems	3
Weight	650 kg
Power consumption	600 W
Fun fact	No e ⁻ line!

Contributions at ICRC 2021:

Overview	P. S. Marrocchesi	#19
р	K. Kobayashi	#98
He	P. Brogi	#101
C, O	P. Maestro	#93
e*e-	S. Tori	#105
Fe	F. Stolzi	#109
and various posters		

- hardening at 1.3 TeV
- in agreement with DAMPE and CREAM

CALET – carbon, oxygen

P. Maestro #93

- CALET carbon and oxygen lower than AMS-02 by 27%
- Shapes agree though
- Agreement with PAMELA
- C/O flat above 25 GeV/n and agrees with AMS-02 and PAMELA
- N.B.: CALET boron similarly lower than AMS, but B/C agree

DAMPE – proton

DArk Matter Particle Explorer

Years in orbit	~ 5.5
Main subsystems	4
Weight	1400 kg
Power	400 W
Fun fact	e ⁻ line?
Contributions at ICRC 2021:	

Overview	X. Li	#13
p + He	F. Alemanno	#117
He	M. Di Santo	#114
С, О	L. Wu	#128
B/C	C. Yue	#126
Fe	Z. Zu	#115
and various posters		

- hardening at ~500 GV, softening at ~14 TeV
- in agreement with CALET and CREAM balloon

X. Li #13

DAMPE – helium

M. Di Santo #114

DArk Matter Particle Explorer

Years in orbit	~ 5.5
Main subsystems	4
Weight	1400 kg
Power	400 W
Fun fact	e ⁻ line?

Contributions at ICRC 2021:

Overview	X. Li	#13
p + He	F. Alemanno	#117
He	M. Di Santo	#114
C, O	L. Wu	#128
B/C	C. Yue	#126
Fe	Z. Zu	#115
and various posters		

- hardening at ~1 TV
- softening at ~34 TeV (sig.: 4.3 sigma)
- in agreement with CALET

DAMPE – proton + helium

DArk Matter Particle Explorer

Years in orbit	~ 5.5
Main subsystems	4
Weight	1400 kg
Power	400 W
Fun fact	e ⁻ line?

Contributions at ICRC 2021:

Overview	X. Li	#13
p + He	F. Alemanno	#117
He	M. Di Santo	#114
C, O	L. Wu	#128
B/C	C. Yue	#126
Fe	Z. Zu	#115
and various posters		

ISS-CREAM

ISS - Cosmic Ray Energetics And Mass

Years in orbit	~ 1.5
Main subsystems	4
Weight	1300 kg
Power	400 W
Fun fact	l scream, you scream

Contributions at ICRC 2021:

Overview	ES. Seo	#95
р	G. Choi	#94
heavy nuclei	S. Kang	#97

and various posters ...

- spectrum from 2.5 to 655 TeV
- softening at ~12TeV (sig.: 4.62 sigma)
- agreement with DAMPE above break?
- above 65 TeV, large errors

Bump hunting?

Bump can be parametrised: broken power law, log-parabola, but what does it mean?

Individual source

- Shape determined by
 - source spectrum
 - age
 - distance of source
- Power law source spectra and diffusion coefficient, impulsive injection \rightarrow broad bumps
- Statistical interpretation?!

<u>New population</u>

- Position in energy of spectral feature related to environmental parameters
- How much variance expected?

<u>A cautionary tale</u>

Mertsch (2018)

Softening

• CR spectrum depends on shock compression ratio r:

$$r = \frac{\text{upstream speed}}{\text{downstream speed}} = \frac{u_{-}}{u_{+}} \quad \Rightarrow \quad \frac{\mathrm{d}N}{\mathrm{d}E} \propto E^{-\gamma} \quad \text{with} \quad \gamma = \frac{3r}{r-1}$$

- In test particle DSA, the hydrodynamical shock has $r = 4 \Rightarrow \frac{\mathrm{d}N}{\mathrm{d}E} \propto E^{-2}$
- Can infer source dN/dE from locally observed spectra ($\phi(E) \propto E^{-2.8}$) and diffusion coefficient ($\kappa(E) \propto E^{-0.5...-0.3}$):

• Aggravated in CR modified shocks with efficient acceleration needed for B-field amplification

Softening

M. Pohl #987

- Turbulence generation is energy loss for ions
- steepening?
- No, precursor too small:

 $\Delta\gamma \lesssim 0.1$

S. Das #988

- For massive stars, SN shocks expand into wind
- complex velocity evolution
- compression ratio deviates from 4

- CRs scatter on waves
- Can measure phase speed in PIC

$$r_{\rm CR} \simeq \frac{u_-}{u_+(1+\alpha)} = \frac{r_{\rm gas}}{1+\alpha} < r_{\rm gas}$$

 \rightarrow softer spectra

D. Caprioli #482

Pre-acceleration

Stochastic shock drift acceleration

J. Niemiec #129

- SDA only gives boost
- But: particles reflected away from shock generate turbulence

- Scatters particle back to shock
- \rightarrow more SDA
- Importance of shock front ripples

Bridging the gap

- PIC codes typically run for O(1000) gyro times
- Power law spectra are observed, but textbook DSA not observed yet
- Would need to run for much longer times

PIC-informed MHD simulations

C. Pfrommer #425

- Measure Mach number ${\cal M}$ and obliquity $\,\, \theta_{\rm B}\,\, {\rm in}\,\, {\rm MHD}\,\, {\rm simulation}\,\,$
- Apply lessons from PIC: acceleration efficiency
- Potentially strong conclusions for outer scale, e- accn. efficiency at quasi-perp. shocks

PIC-MHD

- Thermal plasma (MHD) and non-thermal particles (PIC)
- MHD-PIC can resolve long-wavelength instabilities, but needs to model injection
- Need large Alfvénic Mach number, e.g. $\mathcal{M}_{\rm A}\gtrsim 50~{
 m for}\,\theta_{\rm B}=60^\circ$

Heliospheric laboratory

A. Bohdan #443

- Saturn's high Mach number bow shock explored *in-situ* by Cassini space craft
- PIC simulations show B-field amplification due to Weibel instability
- Little dependence on shock speed, mass ratio or upstream plasma eta

Iron

Years in orbit	~ 6
Main subsystems	3
Weight	650 kg
Power consumption	600 W
Fun fact	No e ⁻ line!
Contributions at ICRC 2021:	

Overview	P. S. Marrocchesi	#19
р	K. Kobayashi	#98
He	P. Brogi	#101
C, O	P. Maestro	#93
B, B/C	Y. Akaike	#112
e*+e.	S. Tori	#105
Fe	F. Stolzi	#109
and various posters		

Y. Chen #129

Normalisations different, but shapes compatible

F. Stolzi #109

CALET – AMS agreement

 $e^+ + e^$ agreement in shape **and** normalisation

<u>nuclei</u> agreement in shape **but not** normalisation

<u>Anti-nuclei</u>

BESS

K. Sakai #123

- new \bar{p}, \bar{d}
- Getting close to models

GAPS

P. v. Doentichem

- targets $\bar{p}, \bar{d}, \overline{He}$
- Formation and decay of exotic atoms
- Antarctic balloon flight in late 2022

Why bother?

CRs as spectators

- What are their sources?
- Can we find DM in CRs?
- Is there primordial anti-matter in CRs?

<u>CRs as actors</u>

- CRs produce diffuse emission
- CRs contribute to ionisation, heating
- CRs provide gravitational support
- CRs drive winds
- CRs generate turbulence

Very different demands on models!

CRs blow bubbles

B. Schroer #163

• Non-resonant streaming instability for TeV CRs escaping from source

BUBBLE SCENARIO

 $\vec{\nabla} P$

- subsequent cascading to larger scales
- CR pressure excavates bubble

Coherence Length Galactic B

CRs push clouds

ISM

C. Bustard #170

- MHD code with streaming CRs
- bottle neck effect: CR pressure gradient drives clouds
- with ion-neutral damping: volume effect \rightarrow surface effect

P. Girichidis #180

CRs drive outflows

- traditionally, CRs treated as fluid in MHD simulation
- importance of diffusion
- NEW: spectral treatment, piece-wise power law spectrum
- SF efficiency significantly suppressed!

T. Thomas #145

$\begin{array}{c} {\rm CR \ diffusion \ coefficent \ [cm^2 \ s^{-1}]} \\ 10^{27} & 10^{28} & 10^{29} & 10^{30} & 10^{31} & 10^{32} \\ \end{array}$

CRs determine their own transport

- two-moment treatment: CR energy density and flux
- can estimate diffusion coefficient κ from energy density ε_A available for gyro-resonant scattering:

$$\kappa \propto \Omega \left(\frac{\varepsilon_{\rm A}}{\varepsilon_{\rm A}}\right)^{-1}$$

• very large diffusivities!

Where do cosmic rays come from?

The very local ISM

Anisotropies

Alpha Magnetic Spectrometer

Years in orbit	~ 10
Main subsystems	5
Weight	7000 kg
Power consumption	2000 W
Fun fact	Anti-helium?

Contributions at ICRC 2021:

He, C, O vs Li, Be, B	H. Gast	#1008
Ne, Mg, Si	A. Oliva	#763
F	Q. Yan	#707
Na	C. Zhang	#743
Fe	Y. Chen	#1145
Li, Be isotopes	L. Derome	#992
deuterons	E. F. Bueno	#113
Please turn		

<u>protons</u> M. A. Velasco #108

> <u>electrons + positrons</u> M. Molero #120

Near-term future

HERD S.-N. Zhang

- expected ~2027
- nuclei (30 GeV ... 3 PeV)
- e⁻ (10 GeV ... 100 TeV)

<u>HELIX</u> N. Park # 91

- balloon spectrometer
- drift chamber tracker, TOF, RICH
- flight in 2022

	Cosmic-Ray Nucleus
Si X layer	<u>(</u>
Si Y layer	
Acrylic	
Cherenkov	
Aerogel	
Cherenkov	
Si X layer	/
Si Y layer	
	¥

TIGERISS J. Mitchell #86

- ultra-heavies Z=5 to 86
- would deploy to JEM on ISS

Longer term projects

<u>AMS-100</u>

S. Schael

- Lagrange point 2
- 1 Tesla magnetic, (6 × 2) m
- Tracker, MDR = 100 TV
- Central calorimeter
- Targets e⁺, e⁻, nuclei (beyond the knee), antinuclei

<u>ALADInO</u>

R. Battiston

- Also Lagrange point 2
- Spectrometer: MDR = 20 TV
- Calorimeter
- Targets e⁺, e⁻, nuclei, antinuclei
- pathfinder in 2030?

Summary

Observations

- Great new results, more to come
- Yet, systematic differences
- Ambitious projects in future

Phenomenology

- Bumps, breaks everywhere!
- Source hunting, but beware of statistics!
- Keep an open mind!

Modelling

- Microscopic picture is complex
- Bridging the gap
- Cosmic rays as actors

