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Deep learning: motivation
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before pulse:
RMS (mean) = 21.84
RMS (aver.) = 4.09

after pulse:
RMS (mean) = 24.56
RMS (aver.) = 4.21

averaged signal

standard deviation

Average of 400 events, expected noise reduction with factor√
400 = 20
⇒ Noise is not white/contain features
⇒ Train autoencoder to learn these features



Chosen architecture (autoencoder)

I Unsupervised neural network with compressed representation

I Use Keras and Tensorflow with GPU support

I Based of 1D convolution layers

I ReLu (max(0, x)) activation function

I Max pooling (and upsampling) after convolutional layers

I Binary crossentopy loss function and RMSprop optimizer

I Train networks via uDocker on SCC ForHLR II cluster



Learning strategy and training pipeline

Datasets:

I 25k upsampled (×16) traces with real background +
low-amplitude simulations (< 100µV/m) with randomly
located pulse

Training and evaluation:

I Depth (D) and number of filters per layer as free parameters

I Primary evaluate by loss metrics

I Blind test with full-pipeline Offline reconstruction

i-th encoding layer is described by the following (i = 1, ..., D):

Si = Smin × 2D−i , ni = 2i+N−1 , (1)

where Si is a size of the i-th filter, ni is a number of filters per
layer
D and N are free parameters; Smin = 16 is minimal size of layer
Size of input/output array: 4096 (1280 ns) – 25% of original trace



Threshold and metrics

I Threshold amplitude ⇔ 5% tolerance to false positives

I Efficiency: Nrec./Ntot., fraction of events passed the threshold

I Purity: Nhit/Nrec., fraction of events with
reconstructed position of the peak: |trec. − ttrue| < 5 ns

8 filters 16 filters 32 filters
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Best architecture contains Ndof = 10240



Example: correct identification
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True signal and noise are identified correctly, noise is removed



Example: no identification

500 600 700 800 900 1000

t (ns)

−100

−50

0

50

100

150

A
m

pl
it

ud
e

(µ
V

/
m

)

signal+noise

signal

denoised signal

True signal is heavily distorted by noise, and removed as
background



Example: double identification
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Signal-like RFI is identified as signal



Preliminary conclusion

I Monte-Carlo tests show performance comparable to
standard method and matched filtering

I “Stack more layers” works, but requires larger training sets

I Amplitude reconstruction degenerates when SNR < 1
trace is normalized to [0; 1] ⇒ peak is hidden in noise

How to convince ourselves that the reconstruction is valid
when the signal is not visible?
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Data-driven benchmark

I Tunka-133/Tunka-Rex events with E ∈ [1016 − 1017] eV

I Almost zero events in this energy band by standard method

I Decreasing autoencoder threshold 0.395/0.500→ 0.200/0.500

I Cross-check cuts: direction reconstruction ∆Ω < 5◦,
clustering events
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Example reconstruction

Two example events with E = 30 PeV
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Adaptive LDF (after cuts)

Few antennas are synthesized into single one in order to increase
SNR

The slope of averaged LDF is used for energy reconstruction
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Energy reconstruction (after cuts)

Reconstruction based on single antenna method,
E = κAde

−η(d−d0)

Normalization factor from standard reconstruction; µ = 0%,
σ = 26%
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Conclusion

I The performance of Tunka-Rex autoencoder
has been tested on real data

I Numbers of both true and false positives
are increased when loosing cuts

I We can reconstruct arrival direction
but struggling with energy reconstruction

I Radio autoencoder can be used as self-trigger technique

I Need more sophisticated cuts to lower the threshold

I Need better training


