Probing the particle acceleration at trans-relativistic shocks with GRB afterglows

<u>Kazuya Takahashi</u> (YITP, Kyto U.) Kunihito Ioka (YITP, Kyoto U.) Yutaka Ohira (U. Tokyo) Hendrik van Eerten (U. Bath)

Neutron Star Merger GW170817

EM counterparts

short GRB GRB 170817A

kilonova (optical, IR)

GRB afterglow (radio, optical, X-ray)

Multi-Messenger Astronomy

picture: from LIGO website

Afterglow of GRB170817A

- slow rising & rapid decline after the peak
- single power-law spectrum
- super-luminal motion of a compact source detected by VLBI

* Synchrotron radiation from a relativistic jet* The jet is structured and is viewed from off-axis.

Spectrum: a single power-law from radio to X-ray

Indeed, the observation is still consistent if we use a particle acceleration model in which p changes with the shock speed. (KT et al. in prep.) p: energy spectral index of the accelerated electrons $f(E)dE \propto E^{-p}dE$

Spectrum: a single power-law from radio to X-ray

Can we obtain the evolution of *p* more precisely in future observations of off-axis GRB afterglows?

Motivation:

1. Short GRBs can take place in a dense environment. Afterglow fluxes become larger for denser ISM.

2. Afterglows of nearby (D< 200 Mpc) off-axis short GRBs will be detected as a counterpart of gravitational wave signals.

Nethod

Off-axis afterglow model:

Observed afterglow flux (Sari+98, Granot+99, van Eerten+10)

$$F_{\nu}(T) = \frac{1}{4\pi D^2} \int d\Omega \ \mu R^2 \frac{\epsilon_{\nu'}'(1 - e^{-\tau_{\nu}})}{\alpha_{\nu'}'\Gamma^3(1 - \beta\mu)^3} \Big|_{t=t(T,\Omega)}$$

Local synchrotron emission

 $\epsilon'_{\nu'}(E_{iso}, n_0, \varepsilon_B, \varepsilon_e, p) : \text{emissivity} \\ \alpha'_{\nu'}(E_{iso}, n_0, \varepsilon_B, \varepsilon_e, p) : \text{absorption} \\ coefficient \\ p = p(\Gamma_{sh}) : \text{electron power-law index}$

 $p=p(I_{sh})$: electron power-law n_o : ISM number density

 $\varepsilon_{\rm B}$: energy conversion fraction to B-field $\varepsilon_{\rm e}$: energy conversion fraction to e-accel.

 $au_
u$: optical depth

 μ : cosine of the angle btw. the radial direction and the line of sight

Shock dynamics model Each segment expands as if it were a portion of a spherically expanding shell. Blandford & McKee 1976 (Rela. regime) + Sedov & Taylor (Non-rela regime) Thin shell approximation

Particle acceleration model

As an example, we use the model of Keshet & Waxman (2005):

* parallel shock * isotropic diffusion ***** Relativistic effects

$$p = \frac{3\beta_u - 2\beta_u\beta_d^2 + \beta_d^3}{\beta_u - \beta_d} - 2$$

 $\beta_{u.d}$: shock upstream& downstream speeds measured at the shock rest frame

 $\Gamma_{\rm sh}\beta_{\rm sh}$

10²

(with Juttner-Synge EoS)

a 2.25 2.20 Relativistic limit $p = 20/9 \sim 2.22$ **Relativistic limit:** .-2.15 2.10 $p \to 2.22 \ (\Gamma_{\rm sh} \to \infty)$ Non-relativistic limit: electron 2.00 $p \to 2 \ (\Gamma_{\rm sh} \to 1)$ Non-relativistic limit p=2 10^{-2} 10^{-1} 10^{0} 10^{1}

* This model is consistent with the afterglow spectra of GRB 170817A. (KT et al., in prep.)

Jet structures and afterglow parameters

We apply three jet structures that are consistent with the afterglow of GRB 170817A. (KT & Ioka 2021) The values of afterglow parameters $\varepsilon_{\mathrm{B}}, \varepsilon_{\mathrm{e}}$ are the same as those

used for GRB 170817A.

The viewing angle is changed in the range of $~0.25 \leq \theta_{\rm v} \leq 0.5$

Electron power-law index *p* derived from the spectral slope

Afterglow light curves

The transition phase of *p* could be observed!

Summary & Conclusion

Off-axis GRBs similar to GRB 170817A, but with

- $\begin{bmatrix} \text{larger ISM density: } n_0 = 1 \text{ cm}^{-3} \\ \text{larger luminosity distance: } D = 200 \text{ Mpc} \\ \text{viewing angle: } 0.25 \le \theta_v \le 0.5 \end{bmatrix}$
- The transition of the electron power-law index p from relativistic to non-relativistic regimes would be more clearly observable than in GRB 170817A in the timescale from days to several tens of days.

Backup

Diversity of the possible jet structures (KT & Ioka 2020, 2021)

