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Parametrization of the Relative Amplitude of Geomagnetic and Askaryan Radio Emission from Cosmic-

Ray Air Showers using CORSIKA/CoREAS Simulations

Ek Narayan Paudel, Alan Coleman, Frank Schroeder

Cosmlc rays:
* extremely energetic particles from outer space
« create extensive air showers

Radio emission mechanism in cosmic ray air showers:
1) Geomagnetic emission:
« Due to deflection of charged air shower particles
in the geomagnetic field

« «Bsina
* Generally dominant emission
2) Askaryan emission:

shower front
* Radially polarized about the shower axis

v = velocity of shower along shower axis
B = Earth’s magnetic field

« Linearly polarized in the direction of Lorentz force

* Due to time varying negative charge excess at the
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Figure 1: Different radio emission mechanisms [1].

o = angle between shower direction and Earth’s magnetic field

CORSIKA simulations with COREAS extension [2,3]:

atmosphere

SIBYLL 2.3d, Fluka2011, thinning (1e-6)
star-shaped layout (Fig 4)

primary: proton and iron, energy:10'7°-10'71 eV

At Hilbert peak of signal, x and y Hilbert
components were selected

daxis = 23.7 m, 70-350 MHz
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Figure 3: Filtered time traces along vxB and vxvxB.

« South Pole altitude (2840 m), magnetic field (54.58 pT),
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Figure 2: Shower co-ordinate system
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Figure 4: Star-shaped layout showing amplitude and
polarization of radio emissions at each locations.
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fraction (see Fig. 5)
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SNR cut (>10%) used to remove electric fields with non-coherent signal

Relative Askaryan fraction:
» Decreases with increasing zenith angle
*reaches an asymptotic value with increasing axial distance

Afit can be used to get the plateau value of Relative Askaryan
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Figure 5: Solid (dotted) line represents antenna locations along positive

(negative) y-axis. Red box includes points used for fitting plateau value.

Relative amplitude (G/A):

*depends on sin a

*depends on zenith angle
of the shower o
Reducing dependence of
G on sin a by rescaling:
R= G/(Asin a)

primary:p+Fe, log(E/eV):17.0
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Figure 7: Plateau value of relative amplitude plotted
against sin a. Color bar shows zenith angle of shower.
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Figure 8: Plateau value of relative amplitude plotted
against distance to shower maximum.

Parametrization of dX

Figure 9: In upper plot, dX__

primary:p+Fe, log(E/eV):17.0

Geomagnetic and Askaryan contribution

of the radio emission can be separated.

* The relative amplitude (R) has
correlation with distance to shower
maximum.

« Parameterization:
dX(R) = -474 + 46.7TR+2R?

* The spread is too large for precise
reconstruction of X __
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is plotted against relative amplitude of radio emission
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